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Abstract

In all three chapters, I solve functional problems in macroeconomics and finance applications by param-
eterizing the solution function to the given model with a deep neural network. Following the physics-
informed neural networks (PINNs) approach, which embeds partial differential equations directly into
the loss function during training, I develop finance-informed neural networks (FINNs). Rather than
PDEs governing equilibrium physical systems, FINNs incorporate equilibrium conditions from the fi-
nancial model as penalty terms in the loss function. This approach ensures that the trained neural
network respects the economic structure of the problem while approximating global policy functions
over high-dimensional state spaces without relying on dimensionality reduction or local projection tech-
niques.

Student Debt (Forgiveness) in General Equilibrium.
This chapter evaluates the BidenAdministration’s proposed student loan forgiveness policy in a stochas-
tic overlapping generationsmodel with 60 periods of life and three household types differentiated by stu-
dent debt-to-income ratios. The central finding is that student loan forgiveness generates minimal real
economic effects, contradicting the policy’s stated objective of promoting wealth accumulation among
over-leveraged borrowers. Despite reduced debt burdens, borrowers allocate the transfer primarily to-
ward consumption rather than retirement savings or productive investment, leaving aggregate capital,
production, wages, and asset prices virtually unchanged. For non-borrowers, the policy delivers welfare
losses driven almost entirely by higher tax obligations needed to finance the forgiveness, with negligible
offsetting gains from general equilibrium spillovers. While forgiveness does provide a small welfare ben-
efit through reduced consumption risk—acting as government-provided intergenerational risk sharing
—this effect is quantitatively minor. The results suggest that student loan obligations were not the bind-
ing constraint on wealth accumulation for young highly leveraged highly leveraged borrowers, and the
forgiveness program operates primarily as a fiscal transfer rather than a mechanism to unlock productive
investment.

Real and Asset Pricing Effects of Employer Retirement Matching.
This chapter asks whether employer retirement matching generates meaningful general equilibrium ef-
fects on firm investment and output. Employer matching subsidizes household equity purchases, alter-
ing savings incentives and potentially changing household intertemporal marginal rates of substitution
(MRS). Thefirmdiscounts future dividendsusing the endogenous stochastic discount factor (SDF) aris-
ing from household MRS, so matching could affect corporate investment through this repricing chan-
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Abstract

nel. I integrate stochastic overlapping generations and neoclassical q-theory firm investment models,
where matching enters households’ Euler equations and the household MRS-implied SDF determines
the firm’s cost of capital. Analytically, I prove in a two-period deterministic model that matching un-
ambiguously increases the SDF, reduces equilibrium returns, and raises capital investment regardless of
if the matching is financed out of the labor or capital share of output: households tolerate lower market
returns because their effective returns inclusive of thematch remain attractive. Solving the full 60-period
stochastic model using FINNs confirms these predictions quantitatively. Introducing empirically realis-
tic matching reduces equilibrium equity returns by 79 basis points, increases the aggregate capital stock
by 6.1%, and raises wages by 1.7%.

Deep Learning the Term Structure for Derivatives Pricing.
This chapter introduces a no-arbitrage, Monte Carlo-free approach to pricing path-dependent interest
rate derivatives. The Heath-Jarrow-Morton model gives arbitrage-free contingent claims prices but is
infinite-dimensional, making traditional numerical methods computationally prohibitive. To make the
problem computationally tractable, I cast the stochastic pricing problem as a deterministic partial differ-
ential equation (PDE). Finance-Informed Neural Networks (FINNs) solve this PDE directly by min-
imizing violations of the differential equation and boundary condition, with automatic differentiation
efficiently computing the exact derivatives needed to evaluate PDE terms. FINNs achieve pricing accu-
racy within 0.04 to 0.07 cents per dollar of contract value compared toMonte Carlo benchmarks. Once
trained, FINNs price caplets in a fewmicroseconds regardless of dimension, delivering speedups ranging
from 300,000 to 4.5 million times faster than Monte Carlo simulation as the state space discretization
of the forward curve grows from 10 to 150 nodes. The major Greeks—theta and curve deltas—come
for free, computed automatically during PDE evaluation at zero marginal cost, whereas Monte Carlo re-
quires complete re-simulation for each sensitivity. The framework generalizes naturally beyond caplets to
other path-dependent derivatives—caps, swaptions, callable bonds—requiring only boundary condition
modifications while retaining the same core PDE structure.
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Chapter 1: Student Debt (Forgiveness) in General Equilib-

rium

1.1 Introduction

Student debt has grown to a magnitude of approximately 1.8 trillion dollars, the majority of which is is-

sued by the United States federal government. At the household level, student debt balances constitute

the largest liability aside from mortgages. While there is widespread agreement that higher education

can provide a pathway to higher earnings, the necessity of graduates to finance education with debt has

led to student debt balances and earnings being positively correlated in the data (Catherine and Yannelis

2023). Obscured by that positive correlation is the fact that there exist low-earning, high-student-debt

households, burdened by substantial balances and facing little prospect of relief under the stringent re-

payment clauses governing federal student loans. For example, delinquent borrowers face automaticwage

garnishment and tax rebate sequestration, and the debt is quite rarely discharged even in bankruptcy pro-

ceedings.

Student loan forgiveness policies raise important questions for macroeconomic research. At the individ-

ual level, the credit constraints faced by young would-be borrowers provide justification for government

intervention in the form of student loan subsidization. But in the aggregate, does a productivity external-

ity of education justify this government subsidization financed indirectly by non-borrowers? Along the

same vein, does this productivity externality provide a general equilibrium channel by which even non-
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Chapter 1. Student Debt (Forgiveness) in General Equilibrium

borrowersmay benefit from a loan forgiveness program, by freeing highly-educated borrowers previously

saddled with debt to engage in more productive financial and real activities? The intertemporal tension

between student loans when young and retirement portfolios when old is an important aspect of the eco-

nomic life-cycle in the contemporary American education and financial systems. Asmentioned in policy

debates, the intention of forgiveness is to alleviate financial pressures on middle-class borrowers for the

sake of building wealth through buying homes, saving for retirement, and starting small businesses. This

paper focuses on the channel of retirement savings and capital accumulation. In particular, I quantify

the general equilibrium effects in asset markets that may either amplify or attenuate the redistributional

nature of student loan forgiveness.

Thepolicy environment examined in this paper is theBidenAdministration’sAugust 24, 2022 announce-

ment of up to $10,000 in debt cancellation for non-Pell Grant recipients and up to $20,000 for Pell Grant

recipients, subject to income thresholds of $125,000 (single) or $250,000 (married couples). According

to theWhite House press release:

Middle-class borrowers struggle with high monthly payments and ballooning balances that

make it harder for them to build wealth, like buying homes, putting away money for retire-

ment, and starting small businesses.

Subsequent legal challenges culminated in a June 30, 2023 Supreme Court decision (BIDEN v. NE-

BRASKA, No. 22–506) blocking the program. Nevertheless, the Biden Administration proceeded with

piecemeal forgiveness for certain groups, approving nearly $138 billion in cancellation for almost 3.9 mil-

lion borrowers through more than two dozen executive actions as of this writing. Despite the Supreme

Court ruling, I choose to model the ramifications of the proposed policy in a dynamic stochastic general

equilibrium framework to understand its economicmechanisms and distributional consequences.

By including households who do not hold student debt, I can quantify the effect that this policy has

on non-borrowers through general equilibrium channels. Furthermore, as household indebtedness has

been rising acrossmultiple credit markets (credit cards, mortgages, auto loans), I provide a flexible frame-

2



Chapter 1. Student Debt (Forgiveness) in General Equilibrium

work with which to consider the general equilibrium effects of debt relief policies more broadly. The

central questions I seek to address are: Does student loan forgiveness enable borrowers to accumulate

wealth faster through increased retirement savings or productive investment? Do non-borrowers benefit

or suffer from such a policy through general equilibrium effects onwages, asset prices, and returns? What

role do asset pricing channels play in redistributing the policy’s effects across generations and household

types?

To answer these questions, I develop a fully stochastic overlapping generations model with 60 periods of

life and three household types differentiated by their student debt-to-income ratios. The model features

aggregate productivity risk, endogenous capital accumulation, and government-issued student loans fi-

nanced through a balanced budget. This framework is essential for studying policies that transfer re-

sources across age cohorts and may alter the characteristics of the marginal investor in asset markets. As

argued by Glover et al. (2020), young households have little financial wealth compared to human wealth

(the present-value of future labor earnings), while the opposite is true for older households. Student

loan balances are disproportionately held by younger households. These facts imply that a student loan

forgiveness program amounts to a transfer of financial wealth to young households, thereby shifting the

characteristics of the marginal investor. Closely following the argument of Constantinides, Donaldson,

andMehra (2002), the transfer of financial wealth to young, financially constrained households can sub-

stantially affect the stochastic discount factor and lead to redistribution through the channel of hetero-

geneous portfolios of financial wealth.

Despite the growing macroeconomic and household-level importance of student debt, there is a lack

of structural general equilibrium models which incorporate student debt as a financial liability, so the

asset pricing effects of student debt policies remain poorly understood. In my model, I take as given

the educational choices and corresponding student debt levels of the young, reflecting the reality that

partial loan forgiveness policies target those who have already made their education-loan decisions and

are now in the workforce. This backwards-looking focus allows me to isolate the redistributional effects

of the policy on current borrowerswithout conflating themwith forward-looking changes to educational

3
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investment or borrowing behavior. A study of policies that affect endogenous education choice and the

associatedmoral hazardproblems—whereby futureborrowersmight anticipate forgiveness and alter their

borrowing decisions, or universities might raise tuition in anticipation of debt relief—is left for future

work.

I find that student loan forgiveness fails to achieve its stated objective of promoting wealth accumulation

among borrowers. Despite the reduction in debt burdens, borrowers allocate the transfer primarily to-

ward increased consumption rather than retirement savings or productive investment. Consequently,

aggregate capital, production, wages, and asset prices remain virtually unchanged across policy environ-

ments. For non-borrowers, the policy generates welfare losses driven almost entirely by higher tax obli-

gations needed to finance the forgiveness, with negligible offsetting benefits from general equilibrium ef-

fects. In a counterfactual policy experimentwherein the tax obligation of non-borrowers is pinned at pre-

forgiveness levels and the tax bill is solely borne by thosewho borrowed student loans, thewelfare levels of

non-borrowers are almost unchanged andpositivewelfare gains are observed for both low- andhigh-loan-

to-income borrowers. While forgiveness does provide a small welfare gain through reduced consumption

risk for all household types—acting as a form of government-provided intergenerational risk sharing—

this effect is quantitatively minor and does not offset the fiscal costs borne by non-borrowers.

These results suggest that student loan obligations were not the binding constraint on wealth accumu-

lation for young borrowers. The borrowers with high loan-to-income ratios are not freed up to invest

productively by the forgiveness, instead preferring to consume almost all of the transfer, leaving aggre-

gate capital and production largely unchanged. To this extent, the stated goal of the policy to enable faster

wealth accumulation of borrowers is not successful. The findings underscore that the Biden Adminis-

tration’s forgiveness proposal functions primarily as a fiscal transfer rather than a mechanism to unlock

productive investment or alter macroeconomic outcomes.

4



Chapter 1. Student Debt (Forgiveness) in General Equilibrium

1.1.1 Institutional Setting of Student Loans

For context as to the magnitude of student loan balances, it is worth noting that approximately 89% of

student loan balances outstanding are owed to the federal government throughout the 2010s and 2020s.

The total balance of student loans owned and securitized is reported for the first quarter of 2022 at $1.75

trillion, which compares to $40.72 trillion totalmarket capitalization ofU.S. equities. Total student debt

balances outstanding in theUnited States have increasedwhenmeasured in level, as a percentage ofGDP,

and as a portion of total household debt, and compared to total US equity markets capitalization. At the

household level, average federal loan borrowing amounts to $24,280 for undergraduates and $45,680 for

graduates as of the 2020-2021 academic year (Ma and Pender 2021; Board of Governors of the Federal

Reserve System [US] 2022). Federal student loans are federally issued at a fixed rate of interest set by the

US Congress (Ma and Pender 2021).

A distinctive feature of the federal student loan system is the entitlement-like nature of loan issuance.

Federally-issued student loans are granted to anyonewhoqualifies based onhigher-education enrollment,

without regard to field of study, expectedpost-graduation earnings, credit history, or ability to repay. This

stands in sharp contrast to private credit markets, where lenders condition loan terms on borrower risk

characteristics and expected income streams. The absence of underwriting standards and the unlimited

availability of federal loans up to statutory limits create a unique environment in which students can

accumulate large debt positions irrespective of their future earnings potential. A prospective philosophy

major faces the sameborrowing terms as a prospective engineeringmajor, despite vastly different expected

earnings trajectories. Similarly, students enrolling in institutions with poor labor market outcomes for

graduates face no additional scrutiny or pricing adjustments relative to students at elite institutions with

strong placement records. This entitlement structure, combinedwith statutory limits on borrowing that

have increased substantially over time, enables debt accumulation patterns that may be inappropriate for

the forecasted lifetime earnings of some borrowers. The resulting disconnect between debt obligations

and earnings capacity is a defining characteristic of the student debt distribution andmotivates the policy

concerns that this paper addresses. Indeed, as documented in the Survey of Consumer Finances and
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other household surveys, the data reveal a substantial population of high-debt, low-incomehouseholds—

borrowers with large outstanding balances relative to their realized earnings—who are likely the primary

intended beneficiaries of the Biden Administration’s forgiveness proposal.

1.1.2 Model Overview

Since student debt is awarded to the young and the central tension I seek to analyze is the tradeoffbetween

student debt financing and retirement savings, I use the overlapping generations (OLG) framework pi-

oneered by Samuelson (1958). Themodel features three household types per generation: non-borrowers

and two types of borrowers differentiated by their loan-to-income ratios. This classification is motivated

by empirical patterns in the Survey of Consumer Finances and related household surveys: the highest-

leveraged households in student debt—those with the largest debt-to-income ratios—systematically ex-

hibit lower realized earnings and face worse economic prospects compared to borrowers with similar ab-

solute debt levels but higher incomes. By segmenting households along the loan-to-income dimension, I

capture thefinancially distressedpopulationmost likely targetedby forgiveness policies—those forwhom

debt service obligations represent a large share of disposable income and whose debt burdens are most

misaligned with earnings capacity. Each type within each generation is populated by a continuum of

identical agents, allowing me to refer to the entire generation as ‘the (representative) agent (for that gen-

eration of that type).’ The life-cycle profile of income as estimated from common data sources implies

a low-income retirement period; by choosing standard utility functions, younger generations will find it

optimal to save for retirement financing, guaranteeing non-zero asset demand schedules.

Households accumulate productive capital over their lives, renting capital stocks to the representative

firm for production. Student debt forgiveness frees up financial resources in indebted households, po-

tentially allowing for higher capital accumulation—which can be thought of as a reduced-form proxy for

entrepreneurship activities or other productive investment opportunities undertaken through unmod-

eled financial intermediaries. I assume that agents are financially constrained, such that student loans and

private debt are not redundant financial liabilities. Since my interest lies with the policy’s effects on cur-
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rent graduates, I endow agents with human capital-student debt tuples calibrated to the data on life-cycle

debt-to-income profiles, abstracting from the effects of this policy on future educational investment or

borrowing decisions.

The OLG setting is a natural framework in which to explore the interaction between student loans and

financial assets. While social security—richly studied in the OLG literature—is a program of transfers to

the oldest in society, subsidized student loan issuance and forgiveness are transfers to the youngest. Fur-

thermore, the history dependence on endogenous variables in OLG models generates intergenerational

heterogeneity even in the absence of idiosyncratic shocks, through the inability of agents to engage in

trade with already dead or yet-unborn agents—a phenomenon termed ‘restricted market participation’

(Cass and Shell 1983). Additionally, the realization of an aggregate shock in each period induces agents

to rebalance their portfolios, introducing history-dependent shocks to rational expectations equilibrium

asset returns (Spear and Srivastava 1986; Duffie et al. 1994; Citanna and Siconolfi 2010). This genera-

tional risk is (privately) uninsurable, opening an opportunity for a social planner to improve on private

market outcomes.

Consumption-based asset pricing is therefore a natural framework with which to ascertain the general

equilibrium asset pricing effects of student loan policies. Since the decisions of any agent in a general

equilibrium environment affect the outcome of all agents, student loans ‘matter’ in some sense even to

non-borrowers. But I posit that the link between borrowers and non-borrowers is more direct: a more

highly educated population is perhapsmore productive, so that even non-college attendeeswould benefit

from higher education levels. It is in this spirit that a general equilibrium exploration of the indirect

redistributional effects of student loan policies is in order. I identify several plausible channels through

which student debt forgiveness may affect lifetime utility for both borrowers and non-borrowers: direct

wealth effects for borrowers, retirement portfolio choice decisions for all agents, general equilibriumwage

effects through aggregate capital accumulation, and productivity externalities of educated households

making capital investment decisions. The model allows me to quantify the relative importance of these

channels and assess whether the indirect redistributional effects through general equilibrium prices are
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quantitatively significant.

1.1.3 Preview of Results

I find that student loan forgiveness fails to achieve its stated objective of promoting wealth accumula-

tion among borrowers. Despite the reduction in debt burdens, borrowers allocate the transfer primarily

toward increased consumption rather than retirement savings or productive investment. This behav-

ioral response is notable given the aggressive calibration of precautionary savings motives in the model

(coefficient of relative risk aversion γ = 3), suggesting that life-cycle consumption smoothing incen-

tives dominate precautionary savings incentives. Consequently, aggregate capital, production, wages,

and asset prices remain virtually unchanged across policy environments. The minimal effects on aggre-

gate quantities imply that the channels through which student debt forgiveness might indirectly benefit

non-borrowers—higher wages from increased aggregate capital, altered asset pricing from shifts in the

marginal investor, or productivity externalities from deleveraged entrepreneurial borrowers—fail to ma-

terialize in quantitatively meaningful ways.

For non-borrowers, the policy generates welfare losses driven almost entirely by higher tax obligations

needed to finance the forgiveness, with negligible offsetting benefits from general equilibrium effects.

A counterfactual experiment holding non-borrower taxes fixed at baseline levels confirms this interpre-

tation: when non-borrowers are insulated from the fiscal burden, their welfare remains essentially un-

changed, indicating that general equilibrium price effects are quantitatively unimportant. While forgive-

ness does provide a small welfare gain through reduced consumption risk for all household types—acting

as a formof government-provided intergenerational risk sharing by stabilizing borrower consumption re-

sponses to aggregate shocks—this effect is quantitatively minor and does not offset the fiscal costs borne

by non-borrowers. Overall, the results suggest that student loan obligations were not the binding con-

straint on wealth accumulation for young borrowers, and the forgiveness program operates primarily as

a fiscal transfer rather than a mechanism to unlock productive economic activity.
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1.2 Related Literature

This paper builds on three interconnected strands of literature: empirical and structural research on stu-

dent debt and higher education finance, overlapping generations models with aggregate risk and asset

pricing, and computational methods for solving high-dimensional dynamic equilibriummodels.

1.2.1 Higher Education Financing

The literature on student debt in finance and economics has been growing rapidly. Early structural work

by Ionescu (2009) develops amodel of student borrowingwith default risk. Establishing that young bor-

rowers are credit constrained, Lochner and Monge-Naranjo (2011a) and Lochner and Monge-Naranjo

(2011b) provide evidence that student loans are a worthwhile borrowing vehicle and examine how credit

constraints shape human capital investment decisions. More recent contributions study the returns to

education across different fields: Bleemer andMehta (2022) document substantial heterogeneity in earn-

ings by major, reinforcing the concern that the entitlement structure of federal loans may enable debt

accumulation patterns misaligned with earnings capacity. Abbott et al. (2019) provide evidence on the

education-to-debt dynamics over the life cycle. To unpack the distributional effects of the Biden Admin-

istration’s forgiveness policy specifically, Catherine and Yannelis (2023) use micro-level survey data to

compute novel measures of the net present value of forgiveness among borrowers. Without an equilib-

riummechanism inmind, however, they are unable to quantify the redistributional effects the policy has

on non-borrowers through general equilibrium channels—a central focus of my paper. Related empir-

ical work includes Chakrabarti et al. (2020), which shows a negative relationship between student debt

balances and performance in higher education, and Morazzoni (2022), which studies the link between

student debt overhang and entrepreneurship. The survey of the empirical student debt literature from

Yannelis and Tracey (2022) is more thorough than my own. Most closely related to my structural ap-

proach, Fu, Lin, and Tanaka (2025) build a model exploring the tradeoff between costly human capital

investment (on-the-job learning) and loan repayment, finding that income-based repayments increase

both welfare and government revenue despite losses to the loan program revenue itself. While my pa-
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per evaluates the one-time forgiveness proposal, Boutros, Clara, and Gomes (2024) study optimal stu-

dent loan contract design by comparing alternative payment schedules that offer partial or full deferral

of repayment until later in life when marginal utility is lower, finding large welfare gains comparable to

debt relief but without adverse fiscal implications. My paper complements this literature by explicitly

modeling general equilibrium asset pricing effects and the role of non-borrowers in a stochastic OLG

framework.

1.2.2 Overlapping Generations Models, Policy Analysis, and Asset Pricing

The use of overlapping generations models to study fiscal policy and asset pricing has a long tradition

in macroeconomics. The classic contributions of Auerbach and Kotlikoff (1987) established the OLG

framework as a powerful tool for evaluating intergenerational redistribution from tax and transfer poli-

cies. In the asset pricing literature, Storesletten, Telmer, and Yaron (2007) explore the extent to which

idiosyncratic shocks over the life cyclematter to asset prices, whileHasanhodzic (2015) show that soft bor-

rowing costs, rather thanhardborrowing constraints, cangenerate realistic riskpremia inOLGeconomies.

Glover et al. (2020) use the Great Recession as a setting to explore how asset prices contribute to redis-

tribution across the life cycle, and include a good survey of OLG-based asset pricing. The mechanism

linking the age distribution of wealth holders to equilibrium asset returns has been studied by Gârleanu

and Panageas (2015) under the title “young, old, conservative, and bold,” and by Geanakoplos, Magill,

andQuinzii (2004),who document how demography drives long-run predictability of the stockmarket.

Mypaper contributes to this literature by studying how student loan forgiveness—a transfer to the young

—affects the identity of the marginal investor and thereby equilibrium asset prices, following the theo-

retical insights of Constantinides, Donaldson, andMehra (2002) on how transfers of financial wealth to

financially constrained young households can substantially affect the stochastic discount factor. Works

I saw early in graduate school that were foundational in generating my research agenda include Moretto

(2021) and Kim (2018).
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1.2.3 Computational Methods

I refer the reader to Fernández-Villaverde (2025) for the most up-to-date comprehensive survey of deep

learning methods in macroeconomics. In the computational macroeconomics literature, my methodol-

ogy most closely resembles that of Azinovic, Gaegauf, and Scheidegger (2019) in my use of deep neural

networks to approximate global policy functions. The use of neural networks allows me to use the com-

plete state variablewithout truncation, due to the cheap evaluation of neural networks. This is in contrast

to themodel-reduction literature pioneered byKrusell and Smith (1998),which seeks a sufficient statistic

to represent the state variable, in practice boiling down to a finite set of moments regarding the distribu-

tion that comprises the state variable. Related deep learning approaches include L.Maliar, S.Maliar, and

Winant (2021) andHan, Yang, and E (2021), the latter of whom use deep learning to endogenously learn

the most economically informative moments in a model reduction approach. In continuous time finan-

cial intermediate macro-finance models, cutting-edge methods are in the vein of Gopalakrishna (2021),

who incorporates active learning to endogenously oversample regions that are hard for themachine learn-

ing algorithm to learn. By embedding economic equilibrium conditions directly into the loss function—

an approach inspired by physics-informed neural networks (Raissi, Perdikaris, and Karniadakis 2019)—I

am able to solve for equilibrium in a high-dimensional stochastic OLG economy with heterogeneous

agents and aggregate shocks without resorting to approximations of the state space.
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1.3 TheModel

I use anoverlapping generationsmodelwithJ = 3 types per generation.1 Indexedby j ∈ {0, . . . , J−1},

I consider type j = 0 to be households with no student debt, type j = 1 to be households in the bot-

tom half of the loan-to-income distribution (conditional on holding student debt) and type j = 2 to

be households in the top half of the loan-to-income distribution. This type classification along the loan-

to-income dimension is motivated by the same empirical patterns discussed in the Model Overview: the

highest-leveragedhouseholds in studentdebt—thosewith the largest debt-to-income ratios—systematically

exhibit lower realized earnings and face worse economic prospects compared to borrowers with similar

absolute debt levels but higher incomes. By segmenting households in this way, I capture the financially

distressed population most likely targeted by the Biden Administration’s forgiveness policy—those for

whom debt service obligations represent a large share of disposable income and whose debt burdens are

most misaligned with earnings capacity. This classification allows me to isolate the effects of forgiveness

on the borrowerswho aremost financially constrained by their student loan obligations andmost in need

of relief according to the policy’s stated goals.

I model the life cycle from entrance to the workforce through retirement, so that the education choice

(and therefore loan balances and human capital stocks) are endowed, set exogenously to match the data.

Amodel withmicrofounded education, loan, and human capital choices is left to later research. Student

debt payments and balances will be calibrated by the data. By taking the payments and balances as gov-

erned by the data, I can abstract from heterogeneity in payment systems in the data, such as enrollment

in various payment programs offered by the government and differential interest rate schedules faced by

different borrowers. This substantially reduces the set of assumptions required tomodel the large variety

of repayment programs offered to borrowers.

There are I periods of life for each generation. Lifetimes are deterministic.

Available for purchase at all stages of life are financial assets for the purpose of consumption smooth-
1In this and other indexing choices, I start my indices at 0.
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ing and retirement financing, taking the form of productive capital. Discussion of these assets is also

included below. Households rent their stock of capital to firms and inelastically supply labor in exchange

for competitively determined rental returns on capital and competitively determinedwages for labor. The

financing of productive capital provides a plausible channel for a positive externality of debt-financed ed-

ucation: by borrowing to pay for college, households can begin accumulating capital earlier and thereby

growing the aggregate capital stock and the output of the economy. This is precisely one of the general

equilibrium forces that will be studied in this paper.

Since I model student debt load as an exogenous endowment, student debt issuance to the youngest

households of each type in any period are financed by the government budget constraint: it will be paid

for by tax revenue and repayment on previously issued loans.

For any variable x, subscripts xi,j,t means the value of x for the i-th oldest generation of type j; i.e. the

j-type generation born at t− i. Additionally, for any lower-case i, j, t-subscripted variable, let the upper-

case script variable denote its ij-vector: Xt := {xi,j,t}i,j .

1.3.1 Market Structure

The source of aggregate risk in the economywill be the total factor productivity affecting firm output, an

autoregressive process of degree one –AR(1) – in logs. It is well known that models of this type have a

Markov equilibriumwith history dependence in the state variable (Spear 1988). As shown byHenriksen

and Spear (2012)multi-period-livedOLGmodels with infinitely-lived financial assets subject to aggregate

uncertainty generically lack strongly stationary (or, in the terminology of Citanna and Siconolfi (2007),

short-memory) equilibria, thus producing endogenously incomplete markets.

Log-TFP follows the following process:

logZt+1 = ρ logZt + σϵϵt+1 (1.1)

where 0 < ρ < 1 so that logZ has a stationary distribution and the shock ϵ is drawn from a standard
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Normal Distribution: ϵ ∼ N (0, 1).

As discussed above, I model one asset. Capital is accumulated by households, depreciating at constant

rate δ per period, and rented to the firm at competitive rental rates rt in period t. Agent of age i and type

j at time t chooses how much capital to accumulate for the next period: ki+1,j,t+1. The net return on

capital is given asRt = 1 + rt − δ.

Short sales on capital are forbidden, so that ki,j,t ≥ 0 for all i, j, t.

1.3.2 Households

As mentioned above, each generation lives for exactly I periods. Using t as the time index, the index

i ∈ {0, . . . , I − 1} represents age concurrently with time. The index j ∈ {0, . . . , J − 1} represents

types.

Agents are endowed with labor efficiency units ℓi,j over their life-cycle for all i, j, t. Types j are also en-

dowed with initial student debt balance d0,j to finance education. The debt di,j is paid back in payments

ai,j by generation i of type j in period t over the life-cycle.

In each period, agents choose optimal consumption and savings in risky capital, subject to the constraints

as described in the previous section.

Households earn income from wages:

yi,j,t = wtℓi,j (1.2)

at wage ratewt competitively determined per efficiency unit of labor.

The government institutes a linear tax at rate τt to finance its spending on new student debt issuance,

more discussion of which will be included below in theGovernment section.
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The sequential budget constraints for agents alive at time t are thus:

ci,j,t + ii,j,t = yi,j,t(1− τt) + rtki−1,j,t−1 − ai,j,t (1.3)

ii,j,t = ki+1,j,t+1 − (1− δ)kt (1.4)

Since agents die with certainty after their last period of life and are endowed with no financial assets:

k0,j = kI−1,j = 0 for all j, t.

Households form utility over lifetime consumption:

U : RI
++ → R

I’ll assume additively time-separable vonNeumann–Morgenstern expected constant relative risk aversion

(CRRA) utility, with coefficient of relative risk aversion γ:

U
(
{ci,j,t+i}I−1

i=0

)
= Et

I−1∑
i=0

βiu(ci,j,t+i) : u(c) =


c1−γ−1
1−γ γ ∈ R+ \ {1}

ln(c) γ = 1

Then the households’ formal problem can be written as:

max
{ci,j,t+i,ki+1,j,t+i+1}I−2

i=0

{
U({ci,j,t+i}I−1

i=0 )
}

s.t. (1.5)

ci,j,t + ii,j,t = yi,j,t(1− τt) + rtki−1,j,t−1 − ai,j,t (1.6)

ii,j,t = ki+1,j,t+1 − (1− δ)kt (1.7)

ki+1,j,t+1 ≥ 0 (1.8)

Let µki,j,t be the Lagrange multiplier on the capital nonnegativity constraint for household i, j at pe-

riod t. Households’ optimality conditions are given by the following Euler equations and KKT condi-
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tions:

u′ (ci,j,t) = βEt [u′ (ci+1,j,t+1) (1 + rt+1 − δ)] + µki,j,t (1.9)

ki+1,j,t+1 ≥ 0 (1.10)

µki,j,tki+1,j,t+1 = 0 (1.11)

1.3.3 Firms

The economy is populatedby a representativefirm. Thefirmhires all types ofworkers. Firms are endowed

with period production functionF (·, ·) : R2
+ → R+, which has two components: capitalKt and labor

Lt.

The firm is subject to the aggregate productivity shock Zt and has Cobb-Douglas technology with pa-

rameter α so that output Yt is given by:

Yt = ZtF (Kt, Lt) = ZtZK
α
t L

1−α
t (1.12)

The firm is perfectly competitive, choosing capital stock and labor demand and then paying competitive

wages to clear the market. Therefore the firm’s problem is given by:

max
Kt,Lt

{
ZtZK

α
t L

1−α
t − wtLt − rtKt

}
with optimality conditions to clear the markets for labor and capital:

wt = (1− α)ZtZ

(
Kt

Lt

)α
=⇒ Lt =

∑
i,j

ℓi,j,t (1.13)

rt = αZtZ

(
Lt
Kt

)1−α

=⇒ Kt =
∑
i,j

ki,j,t (1.14)
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1.3.4 The Government

The government collects income tax revenue from the linear tax schedule Tt =
∑

i,j τtyi,j,t and stu-

dent debt repayments At =
∑

i,j ai,j,t. The government issues student debt balancesDt = d0,j to the

youngest households of each type.

Therefore the government’s budget constraint is given as:

Dt = At + Tt (1.15)

This can be re-written more conveniently to immediately solve for the tax level:

τt =
Dt − At∑
i,j yi,j,t

(1.16)

1.3.5 Market Clearing

The capital and labor markets need to clear:

∑
i,j

ki,j,t = Kt (1.17)

∑
i,j

ℓi,j = Lt (1.18)

The consumption market will clear via Walras’s Law.

1.3.6 Equilibrium

The equilibrium of study in long-lived stochastic overlapping generations models is that of a recursive

Markov equilibrium.

Definition 1. The recursive Markov equilibrium is defined by time-homogeneous policy functions for
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the purchase and pricing of assets for state variable χ:

{K ′(χ), µk(χ)}

where χ ⊇ (K, Z) is taken to be at a minimum the lagged asset holdings of all agents and the current

realization of the shock. The time-homogeneous policy functions solve the households’ problems, the firm’s

problem, and the government budget constraint. Markets for capital, bonds, and labor must clear. Feasi-

bility arises fromWalras’s Law and is given by

Yt = Ct +Dt + It

whereCt is aggregate consumption, It is aggregate investment, andDt is issuance of new student loans.
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1.4 Data Sources and Calibration

The main model objects that need external calibration from the data are the life-cycle profiles of labor

efficiencyunits, student debt balances, and student debt payments. Further details on those below. Other

model parameters are calibrated as follows:

Table 1.1: Calibrated Parameters

Description Symbol Value Target / Source
Periods of life I 60 –
Efficiency units of labor ℓi See Figure (1.1) SCF (2019)
Discount factor β 0.950 –
Relative risk aversion γ 3 –
Capital share (Cobb–Douglas) α 0.35 –
TFPmultiplier Z 101−α Normalization
Persistence of log TFP ρZ 0.90 –
Std. dev. of TFP shock σZ 0.0152 std(Zt) = 3.5%
Depreciation rate δ 0.10 –

1.4.1 Data Source

For data, I use the Survey of Consumer Finances (SCF) 2019 release (Board of Governors of the Fed-

eral Reserve System 2019). The time reflected in this sample is roughly co-incident with the announce-

ment of the Biden Administration’s planned policy, so this should represent the most accurate data to

study.

The SCF oversamples high-wealth and high-income households, so I truncate the top 10% of the income

distribution. Since samples are relatively small when segmented by age and loan-to-income rankings,

the income and student debt life-cycle profiles are not smooth. To aid with computational efficacy, I

choose to smooth these profiles before feeding them in to my model. For labor efficiency units, I choose

to smooth with a cubic polynomial fit to reflect the well-established hump shape of the income profile.

For student debt balances, I use a quadratic polynomial fit and for student debt payments I use a linear

polynomial fit.
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Figure 1.1: Estimation of life-cycle profile of income, student debt balances, and student debt payments.
Also plotted: cubic, quadratic, and linear polynomials respectively to smooth the profiles for computa-
tion. Source: SCF 2019.
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Since student debt balances are sometimes borne by the parents of the college student requesting financ-

ing, student debt balances in the data stay high through the life cycle. To reflect this realistic family struc-

turewhile staying agnostic to family linkages, I normalize all life-cycle profiles from the SCFbyhousehold

size, which is reported in the SCF.

1.4.2 Estimating Student Debt Balances After Forgiveness

A central challenge in modeling the Biden Administration’s forgiveness proposal is that the policy has

not been implemented, making post-forgiveness debt balances and payment schedules unobservable in

the data. This necessitates assumptions about how forgiveness would affect the life-cycle profiles of debt

balances and required payments for each household type. This section describes my approach to con-

structing these counterfactual profiles.

TheBidenAdministration’s plan calls for forgiveness of up to $10,000 for earners below$125,000 (single)

or $250,000 (married), with up to $20,000 in forgiveness available to Pell Grant recipients. Since I ag-

gregate borrowers into three broad types (non-borrowers, low loan-to-income borrowers, and high loan-

to-income borrowers), I cannot simply reduce all balances by a uniform $10,000. Instead, the amount of

forgiveness received by each type at each age represents the expected forgiveness conditional on age, type,

income, and Pell Grant recipient status. To construct this expected forgiveness, I use the SCF 2019micro-

data to compute the average forgiveness that would accrue to households of each age and loan-to-income

type, accounting for both the income eligibility thresholds and the differential treatment of Pell Grant

recipients.

Figure 1.2 (top panel) shows the resulting life-cycle profile of average forgiveness amounts by type. Sev-

eral features are worth noting. First, forgiveness amounts decline with age for borrowers, reflecting two

forces: (a) older borrowers tend to have lower remaining balances due to years of repayment, and (b)

older borrowers are more likely to have incomes exceeding the $125,000 threshold, rendering them inel-

igible for relief. Second, high loan-to-income borrowers (type j = 2) receive higher average forgiveness

than low loan-to-income borrowers (type j = 1) at young ages, since their balances are higher and a
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larger share are Pell Grant recipients who qualify for the $20,000 tier. Third, the forgiveness amounts

are modest relative to outstanding balances, particularly for older borrowers, implying that forgiveness

provides partial rather than complete relief.

Given the post-forgiveness debt balances, I must next determine the implied payment schedules. Since

the counterfactual payment schedules are unobserved, I adopt a parsimonious approach that maintains

a constant payment-to-balance ratio across the before- and after-forgiveness policy environments. For-

mally, let di,j denote the baseline (no-forgiveness) debt balance for age i and type j, let ai,j denote the

baseline payment, and let dforgi,j denote the post-forgiveness balance. I assume the post-forgiveness pay-

ment aforgi,j satisfies:
a
forg
i,j

d
forg
i,j

=
ai,j
di,j

. (1.19)

This assumption is both model-free and empirically plausible. If household payments follow a stan-

dard amortization formula (as is typical for federal student loans under standard repayment plans), re-

ducing the principal balance by a constant proportion mechanically reduces required payments by the

same proportion, holding the interest rate and remaining maturity fixed. This approach avoids impos-

ing additional structure on repayment behavior and abstracts from heterogeneity in repayment plans

(e.g., income-driven repayment vs. standard repayment),whichwould require strong assumptions about

which plans borrowers select and how those selections might change post-forgiveness.

Figure 1.2 (middle and bottompanels) displays the baseline and post-forgiveness life-cycle profiles of debt

balances and payments for each borrower type. The middle panel shows that forgiveness generates a

discrete downward shift in balances at all ages, with the magnitude of the shift declining with age as

described above. The bottom panel shows that payments decline proportionally, preserving the life-cycle

shape of the payment profile while reducing its level. Importantly, even after forgiveness, high loan-to-

income borrowers (type j = 2) face substantially higher debt burdens and payments than low loan-to-

income borrowers (type j = 1), indicating that forgiveness does not eliminate heterogeneity in financial

distress across borrower types.
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I acknowledge that this constant payment-to-balance ratio assumption is a simplification. In reality, some

borrowers may choose to maintain their pre-forgiveness payment levels to pay down principal faster,

while others may be enrolled in income-driven repayment plans where payments depend on income

rather than balance. However, absent detailed micro-data on repayment plan enrollment and borrower

optimization over repayment strategies—which are beyond the scope of this paper—the constant ratio

assumption provides a transparent, model-free benchmark. Future work could refine this approach by

explicitly modeling endogenous repayment plan choice or by incorporating richer micro-data on actual

post-forgiveness payment behavior (should such data become available). For the purposes of this paper,

the constant ratio assumption allows me to focus on the central question of whether forgiveness enables

wealth accumulation, rather than on the mechanics of debt amortization.
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Figure 1.2: Estimated profiles of student debt balance and payments after forgiveness according to the
White House plan: $10,000 in forgiveness for income below $125,000. Older borrowers receive (on aver-
age) lower forgiveness because of (a) lower debt balances or (b) higher incomes. Source: SCF 2019.
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1.5 SolutionMethod: FINNs

The general structure of the algorithm used to solve the fully stochastic model is inspired by Azinovic,

Gaegauf, and Scheidegger 2019 and Azinovic and Zemlicka 2024, though with a few differences detailed

below. For themost up-to-date primer ondeep learning for economics, includingfirst-principles building

of (deep) neural networks, see Fernández-Villaverde 2025.

Following the physics-informed neural networks (PINNs) approach of Raissi, Perdikaris, and Karni-

adakis (2019),which embeds partial differential equations directly into the neural network loss function,

I develop what I term finance-informed neural networks (FINNs). Rather than the PDEs governing

a physical system, FINNs incorporate the equations governing the financial model—Euler equations,

market clearing conditions, and other terms discussed below—as penalty terms in the loss function. This

approach ensures that the trained FINN respects the economic structure of the problem while approxi-

mating the equilibrium policy functions.

1.5.1 Applications of Domain Knowledge

Naïve machine learning methods excel at finding solutions that adhere to the minimization problem of

the loss function as specified by the user. The upside of this means that economists need not spend

significant time writing the low-level algorithm needed for training the FINN. The downside is that

the landscape may admit low-error pathological ‘solutions’ that evaluate to a very small error but are

economically implausible. Examples of this that I encountered in training often include:

- constant or near-constant predictions that fail to vary with the underlying shock process in any

way;

- predictions that vary only in measure isomorphism to the underlying shock process;

- prices approaching zero and quantities approaching infinity;
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- and other pathological outcomes.

Especially in the stochastic overlapping generations environment where Euler equation iteration is not

necessarily a contraction mapping, these outcomes must be monitored.

To avoid the pathological predictions of the type discussed in the preceding paragraph, I employ the

following custom strategies to augment the off-the-shelf routines available in coding software.

1. Using the loss function to discipline economically plausible outcomes. The formal statement of the

loss function is below, but it can be understood as comprising of three parts:

(a) Themean-square-error (across households and time) of the Fisher-Burmeister transformbe-

tween the Euler equation residual and forward capital;

(b) Themean-square-error (across time) of the aggregate feasibility constraint. This ensures the

pathological solution of ci,j,t → 0 for any i, j, t is not found; and

(c) A penalty term inversely related to the variance (across time) of the aggregate capital stock.

This ensures the pathological solution of households refusing to adjust their capital accu-

mulation across the business cycle is not viable.

2. Applying the Fisher-Burmeister transformation to eliminate the computation of Lagrange multipli-

ers. Since the agents in the model are constrained to not sell capital short, the Euler equation may

not bind endogenously for all agents. As formulated in the formal model earlier in this paper, this

entails solving for Lagrangemultipliers of each agent, effectively doubling the required state space.

To avoid this, Azinovic and Zemlicka (2024) applies the Fisher-Burmeister transform as follows:

ΨFB(a, b) = a+ b−
√
a2 + b2 (1.20)

which embeds the KKT conditions as a, b ≥ 0 and ab = 0 ⇐⇒ Ψ(a, b) = 0. However, since

the FINN takes derivatives of equilibrium conditions, the Fisher-Burmeister equation becomes
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unstable as a, b → 0 jointly: the derivative of the square-root approaches positive infinity. To

stabilize this, I modify the Fisher-Burmeister equation to:

Ψ(a, b;λFB, ϵFB) = λFB

(
a+ b− a2 + b2√

a2 + b2 + ϵ2FB

)
+ (1− λFB)a

+b+ (1.21)

where for this model I set λFB = 0.8 and ϵFB = 10−3.

3. Time t = 0 initialization near or on the equilibrium manifold. Since—as stated previously—

iteration on the Euler equations in stochastic overlapping generations models is not a contraction

mapping, the starting guess is very important to finding equilibria. Some approaches entail a pre-

training phases of an easier model, such as with fewer assets or no aggregate risk. Since the model

in this paper is already quite simple, I do not need to employ these methods. Instead, after each

simulation step of drawing the ergodic time series, I will save and storeX as the mean across time

of the FINN inputs. Since the FINN is learning the global policy functions, these values can only

be expected to evaluate correctly on admissible equilibrium values. In the subsequent time series

iteration, I will initialize endogenous state variables at time t = 0 based on the values inX .

4. Alleviating the sequential bottleneck in data generation for training. Unlike inmanymachine learn-

ing environments, the data on which the algorithm trains for this model is itself generated by the

model. In particular, the policy function predicts forward capital in this model. In order to gener-

ate training data, Imust simulate outcomes of the aggregate risk process alongwith predictions for

forward capital, which become the capital in the next period. Usual sample sizes for models like

this are for around T = 10000 periods. Rather than draw one block of 10000 periods, I instead

draw 100 blocks of 100 periods in parallel, enormously parallelizing the simulation pass for each

loop in the training algorithm.
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1.5.2 FINNArchitecture and Training

Theory indicates that the state variable required for computation of the model in this paper is Xt =

({ki,j,t}i,j, Zt), and the predictions of the FINNwill beYt = ({ki+1,j,t+1}i,j). The FINN architecture

consists of two hidden layers, each with 100 neurons. With I = 60 periods of life and J = 3 types,

the input layer has dimension 3 × 59 + 1 = 178 (capital holdings for all agents plus the aggregate pro-

ductivity shock Zt), and the output layer has dimension 3 × 59 = 177 (next-period capital holdings

for all agents). I apply the hyperbolic tangent activation function tanh(·) to the hidden layers, which

provides smooth, differentiable nonlinearity necessary for backpropagation through the economic equi-

librium conditions. Since capital holdings must be nonnegative, I apply the softplus activation function

softplus(x) = log(1 + ex) to the output layer, which smoothly enforces the nonnegativity constraint

while remaining differentiable everywhere.

To ensure stable training and keep inputs in the active region of the tanh(·) activation function (where

gradients aremeaningfully nonzero), I normalize all inputs by dividing by 1+X , whereX is the running

mean of the state variable across training iterations. This normalization prevents vanishing gradients and

avoids division by zero. The network is trained using the Adam optimizer (Kingma and Ba 2014)with a

small learning rate of 10−6 to ensure stability in the presence of the complex, nonlinear economic con-

straints embedded in the loss function. Training proceeds for 10,000 episodes, with minibatches of size

200. Crucially, the simulated training data is redrawn after each epoch, ensuring that the network learns

from fresh realizations of the stochastic equilibrium rather than overfitting to a single simulation path.

Across all solvedmodels, the loss function evaluates to approximately 2×10−6 and the Fisher-Burmeister

transform of the Euler equation residual averages approximately 0.15% per household, indicating that the

trained networks accurately satisfy the equilibrium conditions.

Expectations in the Euler equations and forecasts of future state variables are computed using Gauss-

Hermite quadrature with 15 nodes. Table 1.2 reports the computational environment and runtime statis-

tics. Training each model to convergence requires approximately 45 minutes on consumer-grade hard-
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ware. Unlike machine learning applications that require large pre-existing datasets, the FINN approach

generates its own training data through simulation. Thismeans that thememory bottleneck is the FINN

size rather than dataset size, allowing the entire training process to fit comfortably within the VRAM

limits of consumer GPUs. This demonstrates the computational accessibility of the FINN approach for

large-scale stochastic OLG models without requiring specialized high-performance computing infras-

tructure. I simulate the training data on the CPU (which is faster at this sort of task) and train the FINN

(constructing economic quantities and computing loss function, evaluating the parameters step) on the

GPU.

Table 1.2: Computational Environment and Performance

Hardware
Processor 12th Gen Intel i9-12900KF (24) @ 5.100GHz
GPU NVIDIA GeForce RTX 3080 with 8GB of VRAM
RAM 32 GB

Performance
Approximate training time per model 45 minutes
Training episodes 10,000
Minibatch size 200
Quadrature nodes 15 (Gauss-Hermite)
Approximate Euler residual 0.15%
Approximate Loss function value 2× 10−6

We can formally define the FINN parameterized by Θ as a function that maps the state variable to the

policy functions:

VΘ(·) : Xt 7→ Yt

where Xt = ({ki,j,t}i,j, Zt) represents the complete state of the economy (all agents’ capital holdings

and the aggregate productivity shock) andYt = ({ki+1,j,t+1}i,j) represents the equilibriumpolicy func-

tions (all agents’ optimal forward capital choices). The neural network VΘ thus approximates the time-

homogeneous Markov equilibrium policy functions that characterize the recursive competitive equilib-

rium defined earlier.
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Critically, given the state variableXt and the FINN’s predicted policy functionsYt, I can recover all eco-

nomic quantities needed to evaluate equilibrium conditions using the budget constraints, market clear-

ing conditions, and firm optimality conditions from the formal model. Specifically: aggregate capital

Kt =
∑

i,j ki,j,t and aggregate labor Lt =
∑

i,j ℓi,j determine factor prices via the firm’s optimality

conditions (wt, rt); these prices combined with the exogenous efficiency units ℓi,j and debt payment

schedules ai,j determine household incomes and the government budget constraint determines the tax

rate τt; and finally the household budget constraints then back out consumption ci,j,t and investment

ii,j,t for all agents. This closed-form recovery of all equilibrium objects from (Xt,Yt) is what allows the

loss function to be evaluated purely as a function of the neural network’s inputs and outputs, without

requiring additional solution steps within each training iteration.

The loss function can be evaluated as

LΘ({Xt,Yt}t) = log

(
1+

1

TJ(I − 1)

∑
i,j,t

Ψ

(
(u′)−1 (βE[u′(ci+1,j,t+1)(1 + rt+1 − δ)])

ci,j,t
− 1, ki+1,j,t+1

)2

+
100

T

∑
t

(∑
i,j(ci,j,t + ii,j,t + d0,j)

Yt
− 1

)2

+
10−3

Var[
∑

i,j ki+1,j,t+1]

)
(1.22)

where the three terms inside the logarithmcorrespond to: (1) themean-square-error of theFisher-Burmeister-

transformed Euler equation residuals across all households and time periods, ensuring that the first-

order conditions for household optimization are satisfied; (2) the mean-square-error of the aggregate re-

source constraint, ensuring that consumption, investment, and government spending sum to output and

thereby ruling out pathological solutions where consumption approaches zero; and (3) an inverse vari-

ance penalty on aggregate capital, ensuring that the policy functions respond meaningfully to aggregate

shocks rather thanproducingnear-constant predictions. Together, these three components discipline the

neural network to find economically plausible solutions that satisfy household and firm optimizations,

market clearing, and balance the government budget contraint.
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The outer logarithmic transformation log(1 + ·) serves an important numerical stability purpose dur-

ing training. In early training iterations when the network parameters are far from equilibrium, the raw

loss terms inside the parentheses can be very large, potentially causing gradient explosion and numerical

overflow. The logarithmic transformation compresses these large values, preventing the loss from grow-

ing unboundedly and ensuring stable gradient-based optimization. Conversely, when the network has

converged and the raw loss is very small (near zero), the logarithm satisfies log(1 + x) ≈ x for small x,

meaning that the transformation becomes approximately linear and does not distort the loss landscape

near the optimum. This design ensures stable training throughout the optimization process while pre-

serving sensitivity to small equilibrium violations once the network approaches convergence.

Finally, we have all the pieces in place to define the formal problem solved by the FINN training algo-

rithm:

Θ∗ = arg min
Θ

LΘ({Xt,Yt}t) (1.23)

where the set of neural network parameters Θ∗ will be discovered through the training routine spec-

ified in code, usually a modification of stochastic gradient descent such as the Adam optimizer. The

trained FINN VΘ∗ then provides the solutions to the economic model: for any stateXt, the equilibrium

policy functions are given by Yt = VΘ∗(Xt), and all other equilibrium objects (consumption, prices,

taxes) can be recovered algebraically from the budget constraints and market clearing conditions as de-

scribed above. By minimizing the loss function—which embeds the economic equilibrium conditions

—the FINN training algorithm effectively solves for the recursive Markov equilibrium of the stochastic

overlapping generations model.
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1.6 Results

To analyze the results of the Biden Administration student debt forgiveness policy proposal, I first solve

the baseline economy. I then solve the economy under the proposed $10,000 forgiveness policy. Addi-

tionally, I solve the model according to two counterfactual policies to better understand the underlying

economicmechanisms. In the first, I solve themodel under full student loan forgiveness—where student

debt is never repaid. In the final model, I solve the model under full student loan forgiveness, but hold-

ing the tax obligation of non-borrowers pinned at the level of the baseline economy. This experiment

should isolate pure general equilibrium effects of the forgiveness policy on the non-borrowers. For each

of the four policy environments, I simulate the economy for 100,000 periods to ensure precise estimates

of welfare and other equilibrium statistics.

The tax experiment reveals that almost all welfare loss borne by the non-borrowers under the partial

$10,000 forgiveness and full forgiveness is a result of a higher tax obligation (Figure 1.3).

Table 1.3: Consumption-Equivalent Welfare by Group Across Economies

Baseline $10,000 Full Forgiveness Tax Experiment

No Debt – -1.15% -1.77% -0.10%
Low LTI – +1.46% +1.85% +0.47%
High LTI – +0.71% +5.08% +3.70%

Figure 1.3: Consumption-Equivalent Welfare
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For borrowers with student debt, particularly the high loan-to-income types, student loan forgiveness

does not lead to earlier wealth accumulation (Figure 1.4). In other words, the life-cycle motives for con-

sumption smoothing overpower the deleveraging effect of student loan forgiveness.

Figure 1.4: Expected Life-Cycle Capital Profiles Across Economies

In contrast, the forgiveness of student loansdoes increase early-age consumptionbyfinancially constrained

households (Figure 1.5). This is despite the quite aggressive parameterization of the household utility

function, with γ = 3. At this level of risk aversion, precautionary savings motives should be quite in-

tense so barring financial constraints, households should be eager to build savings early in life. Their

unwillingness to meaningfully alter their savings behavior is evidence that the student loan obligations

were not the cause of underinvestment in retirement savings (or entrepreneurial enterprises) for young

borrowers of student loans.
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Figure 1.5: Expected Life-Cycle Consumption Profiles Across Economies

Since household savings (in the form of the accumulation of productive capital) is not meaningfully

influenced by the student loan forgiveness environment, it is not surprising that real outcomes do not

varymuch: production,wages, aggregate capital, and returns barely vary across these policy environments

(Tables 1.4 and 1.5).

This lack of general equilibrium price effects stands in contrast to the theoretical predictions from the

literature on overlapping generations asset pricing. As argued byConstantinides, Donaldson, andMehra

(2002), shifting financial wealth toward younger, more financially constrained households should alter

the characteristics of the marginal investor, thereby affecting equilibrium asset prices. In particular, one

might expect student loan forgiveness to decrease returns as young households, freed from debt obliga-

tions, enter asset markets more aggressively. However, this mechanism fails to materialize in quantita-

tively meaningful ways precisely because the forgiveness, dwarfed by life cycle effects, does not translate
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into higher capital accumulation by borrowers.

The muted response of aggregate capital stock to the forgiveness policy also implies limited feedback

effects on wages and returns. Since borrowers choose to consume rather than invest the transfer, the ag-

gregate capital stock remains nearly constant across policy environments. Consequently, the marginal

product of labor (and thus wages) and the marginal product of capital (and thus returns) are virtually

unchanged. This finding undermines one potential justification for student loan forgiveness from a non-

borrower perspective: that the policy might generate positive spillovers through higher aggregate pro-

ductivity or wages due to deleveraged, more productive entrepreneurs and workers. Instead, the results

suggest the primary effect is a pure fiscal transfer with minimal real economic ramifications.

Table 1.4: Asset Pricing Outcomes Across Economies

Baseline $10,000 Full Forgiveness Tax Experiment

Average return (%) 12.86 12.98 12.89 12.95
– +12 bps +3 bps +8 bps

Volatility (%) 0.82 0.78 0.77 0.77
– -4 bps -5 bps -5 bps

Table 1.5: Real Outcomes Across Economies

Baseline $10,000 Full Forgiveness Tax Experiment

Output 12.599 12.559 12.605 12.587
– -0.3% +0.0% -0.1%

Output Volatility (%) 5.620 5.468 5.411 5.489
– -15 bps -21 bps -13 bps

Capital 19.322 19.157 19.301 19.227
– -0.9% -0.1% -0.5%

Wage 8.190 8.163 8.193 8.181
– -0.3% +0.0% -0.1%

One avenue left to explore is the avenue of generational risk sharing. The federal government’s domi-

nant role in student loan issuance—accounting for approximately 89% of outstanding balances—can be

understood as the government acting as lender of last resort to young borrowers who may lack credit

histories and collateral. Private credit markets would either decline to lend to such borrowers or would

charge prohibitively high interest rates to compensate for default risk and adverse selection. By offer-
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ing federally-backed loans at statutorily-set interest rates, the government plausibly engages in a form of

intergenerational risk sharing that private markets cannot provide: spreading the risk of uncertain post-

graduation earnings across taxpayers rather than concentrating it on individual young borrowers. This

raises a natural question: does student loan forgiveness enhance this risk-sharing function by further

stabilizing consumption for financially constrained households facing aggregate shocks? In stochastic

overlapping generations economies, households are unable to perfectly insure themselves against risk by

trading contingent claims with other households due to the restrictedmarket participation: some house-

holds are no longer alive and not yet born (Cass and Shell 1983). If forgiveness reduces consumption

volatility—particularly for highly-leveraged borrowersmost exposed to income risk—itmay improvewel-

fare through this risk-sharing channel even in the absence of effects on capital accumulation or aggregate

output.

Figure 1.6: Life-Cycle Consumption Risk Profiles Across Economies
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My results show that the answer is yes, though the magnitude is small. Consumption volatility decreases

not only for borrowers but also for non-borrowers, despite the latter facing higher tax obligations (Fig-

ure 1.6). Student loan forgiveness acts as a form of government-provided intergenerational risk sharing.

Themechanismoperates through general equilibrium stabilization. Prior to forgiveness, borrowers faced

fixed debt obligations that forced sharp consumption cuts during economic downturns, amplifying ag-

gregate demand volatility. By deleveraging these households, forgiveness stabilizes their consumption

responses to aggregate shocks, which in turn stabilizes equilibrium wages and returns. Non-borrowers

benefit from this stabilization even though they bear the fiscal cost through higher taxes. In effect, the

government partially completes markets by redistributing aggregate risk away from the financially con-

strained young and spreading it across all generations through the tax system.

To isolate thewelfare effects attributable purely to changes in consumption risk, I compute a risk-adjusted

consumption-equivalent welfare (CEW) measure. This is constructed by first computing the standard

CEWacross the full stochastic equilibrium, then computing theCEWbased only on themean consump-

tion levels (abstracting from risk), and taking the difference between these two measures. The resulting

risk component captures the welfare change due solely to altered exposure to aggregate shocks, separately

from the level effects of the transfer.

The welfare gains from the intergenerational risk sharing mechanism are very small and do not offset the

welfare losses on non-borrowers from fiscal effects (Figure 1.7).

Figure 1.7: Consumption-Equivalent Welfare: Risk Component
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1.7 Conclusion

This paper evaluates the Biden Administration’s proposed student loan forgiveness policy in a general

equilibrium framework to understand its redistributional effects across borrowers and non-borrowers.

Motivated by the policy’s stated goal of enabling wealth accumulation through reduced debt burdens,

I study whether student loan forgiveness generates meaningful changes in household savings behavior

and asset prices, or whether it primarily represents a fiscal transfer. The policy environment examined

involves up to $10,000 in debt cancellation for eligible borrowers, with an additional $10,000 available to

Pell Grant recipients, subject to income thresholds.

To capture the intergenerational and asset pricing effects of student loan forgiveness, I develop a fully

stochastic overlapping generations model with 60 periods of life and three household types differenti-

ated by their student debt-to-income ratios. Themodel features aggregate productivity risk, endogenous

capital accumulation, and government-issued student loans financed through a balanced budget. By in-

corporating long-lived agents in a stochastic environment, the model generates uninsurable generational

risk and allows for rich interactions between household debt obligations, life-cycle savings decisions, and

equilibrium asset prices. This framework is essential for studying policies that transfer resources across

age cohorts and may alter the characteristics of the marginal investor in asset markets.

Themodel is calibrated to the 2019 Survey of Consumer Finances, matching life-cycle profiles of income,

student debt balances, and repayment schedules across household types. Standard macroeconomic pa-

rameters governing preferences, technology, and aggregate risk are set in line with the empirical literature.

The calibration ensures that the baseline economy replicates key features of the U.S. economy, including

the distribution of student debt across age and income and realistic capital accumulation patterns over

the life cycle.

I solve the model using finance-informed neural networks (FINNs), a computational method that em-

beds economic equilibrium conditions directly into the loss function of a deep neural network. This

approach allows me to compute global policy functions for the high-dimensional state space without
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relying on dimensionality reduction or local approximation techniques. Each of the four policy environ-

ments is simulated for 100,000 periods, and the trained neural networks achieve Euler equation residuals

averaging 0.15% across all households, indicating accurate solutions to the equilibrium conditions.

The central finding is that in contrast with its stated goal, the Biden Administration student loan for-

giveness program generates minimal real economic effects. Despite reducing debt burdens, borrowers

increase consumption rather than capital accumulation, leaving aggregate savings and production virtu-

ally unchanged across policy environments. Consequently, equilibrium wages, returns, and asset prices

exhibit negligible variation. For non-borrowers, the policy delivers welfare losses driven almost entirely

by higher tax obligations needed to finance the forgiveness, with no offsetting gains from general equi-

librium spillovers. The small positive welfare effect from reduced consumption risk across all household

types does not offset these fiscal costs. These results contradict the policy’s stated objective of promot-

ing wealth accumulation and suggest that student loan obligations were not the binding constraint on

retirement savings for young borrowers. The findings underscore that the Biden Administration’s for-

giveness proposal functions primarily as a fiscal transfer rather than a mechanism to unlock productive

investment or alter macroeconomic outcomes.

It is important to emphasize that these findings do not address the normative question ofwhether student

loan forgiveness should be pursued. There may be compelling equity-based arguments for providing re-

lief to the most financially distressed borrowers—particularly those with high debt-to-income ratios and

limited earnings prospects—on grounds of fairness, compassion, or as a form of social insurance against

adverse education-labor market outcomes. My analysis demonstrates only that the statedmechanism—

unlocking productive investment and wealth accumulation—does not operate as advertised in general

equilibrium. Policymakers concerned with borrower welfare may find these results informative for de-

signing more effective interventions, but the case for or against debt relief ultimately rests on political

judgments beyond the scope of positive economic analysis.

More fundamentally, the one-time nature of the Biden Administration’s forgiveness proposal fails to

address the structural forces that generated the student debt crisis in the first place. The policy provides
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temporary relief to current borrowers while leaving intact the dualmechanisms accelerating student debt

accumulation: unbounded government loan issuance and persistently rising tuition prices charged by

colleges and universities. Without reforms to these underlying mechanisms, future cohorts of students

will accumulate debt burdens similar to or exceeding those of current borrowers, necessitating repeated

forgiveness interventions and perpetuating moral hazard on both the demand and supply sides of the

higher education market. A more durable solution would require institutional changes that align the

incentives of government lenders and educational institutions with the long-run financial well-being of

students. Future research could fruitfully explore bargaining models or contract design frameworks in

which the government and universities negotiate over tuition pricing, loan terms, and risk-sharing ar-

rangements—for instance, conditioning institutional funding on post-graduation earnings outcomes or

requiring universities to retain skin-in-the-game throughpartial loan guarantees. Suchmechanisms could

mitigate the moral hazard inherent in the current system while preserving broad access to higher educa-

tion financing.
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tirement Matching

2.1 Introduction

Akey feature ofmodern retirement planning (often in the formof defined-contribution plans like 401(k)

or 403(b)) is employer matching contributions, whereby firms commit to match employee retirement

contributions up to a specified threshold—typically some fraction of salary. Contributions to these

plans comprise over $500 billion annually in the United States alone, with approximately two-thirds of

private-sector workers having access to matching programs. The generosity of matching schedules has

grown substantially over the past two decades, reflecting its increasing centrality to retirement security

and household wealth accumulation. This practice augments workers’ retirement savings in the form

of equity holdings. By subsidizing equity purchases, households receiving the match may tolerate lower

returns since the total return remains attractive inclusive of the match. Since households own the firm

through their equity holdings, this reduction in returns represents a decline in the firm’s cost of equity

capital—the rate at which the firm discounts future dividend streams. Facing a lower cost of capital,

the firm optimally increases investment in physical capital, potentially raising aggregate output, wages,

and welfare. The central question of this paper is whether this general equilibrium pricing mechanism

generates meaningful macroeconomic effects on firm investment, asset prices, and economic output, or

whether employer matching has negligible effects on real outcomes beyond the direct subsidy to partici-

pating workers.
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This paper develops a stochastic overlapping generations model paired with a neoclassical model of firm

investment to study these questions. A centralmethodological contribution is the integration of Samuel-

son (1958)-style overlapping generations on the household side with the q-theory of investment (Tobin

1969; Jorgenson 1963) on the firm side, allowing retirement policy to affect corporate capital accumula-

tion through endogenous equity pricing. Households live for multiple periods, choosing consumption

and equity holdings to finance retirement, and receive employer matching contributions according to a

realistic matching schedule (a fraction ψ of contributions up to a cap ϕ times income). The representa-

tive firm faces convex adjustment costs in the tradition ofHayashi (1982) andmakes dynamic investment

decisions, discounting future dividends at the endogenous stochastic discount factor (SDF) implied by

equity holders. The rich link betweenhouseholds’ private savings behavior andfirm real outcomes via the

firm using the endogenous SDF from household Euler equations provides a rich environment to study

the link between corporate finance and household retirement financing. The model features aggregate

productivity risk, allowingme to study howmatching affects not only the level but also the risk properties

of returns and investment.

I find along the lines of themechanismpreviewed above, employermatching generates substantial general

equilibrium effects beyond simple redistribution. Matching increases aggregate savings by subsidizing

workers’ equity accumulation, which in turn reduces equilibrium equity returns and increases the SDF.

The resulting lower cost of capital stimulates firm investment, raising the aggregate capital stock, output,

and wages. These results stand in contrast to a partial equilibrium view in which matching merely trans-

fers resources from shareholders to workers. Instead, the policy reshapes the investment opportunity set

available to firms, aligning this paper with recent work showing that innovations in retirement finance

can affect real corporate behavior through general equilibrium price effects (A. Zhang 2022).

My model assumes that employer matching contributions are financed entirely out of dividends rather

than being passed through to workers via lower wages. In reality, the incidence of matching costs may be

partially borne byworkers, or determined through some form ofNash bargaining between firms and em-

ployees. However, this simplification does not undermine the core mechanism. Regardless of whether
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matching is financed by reduced dividends, reduced wages, or some combination thereof, the subsidy

to workers’ equity purchases remains operative. Employer matching acts as a multiplier on equity re-

turns from the household perspective: by subsidizing equity purchases, matching effectively increases

the return households receive on their own contributions, inducing them to save more and hold more

equity. This increased equity demand raises the SDF—households become more patient in equilibrium

—which reduces equilibrium equity returns and lowers the firm’s cost of capital. Crucially, this channel

operates through the pricing kernel of the marginal investor, not throughmechanical effects of dividend

payments. The key insight—that employer matching affects corporate capital accumulation through

endogenous equity pricing and the SDF—operates independently of the specific incidence of matching

costs and represents a first-order general equilibriummechanism even in the absence of tax distortions or

wage bargaining.

2.1.1 Institutional Setting of Firm Retirement Contributions

The shift from defined-benefit (DB) to defined-contribution (DC) retirement plans accelerated follow-

ing the Employee Retirement Income Security Act of 1974, which created the regulatory framework for

employer-sponsored retirement plans (Kruse 1995). Subsequent legislation—including the Economic

Growth and Tax Relief Reconciliation Act of 2001, which raised contribution limits, and more recently

the SECURE Acts I and II (Reuter 2024)—has further expanded tax incentives and flexibility for DC

plans. Arnoud et al. (2021) document that employer matching schedules became increasingly generous

between 2003 and 2017, with the combined employer-employee contribution rate rising by approximately

one percentage point. As of recent data, roughly two-thirds of private-sector workers have access to

employer-sponsored DC plans, with the vast majority of these plans offering some form of employer

matching. Given this widespread adoption and the increasing generosity of matching contributions, un-

derstanding the general equilibrium effects of employer matching on asset prices, capital accumulation,

and macroeconomic outcomes has become imperative. While an economist could spend their entire ca-

reer unpacking the rich institutional details, tax incentives, and policy nuances in this space, the central

pricing mechanism I study—how matching subsidies affect household equity demand and firm invest-

43



Chapter 2. Real and Asset Pricing Effects of Employer Retirement Matching

ment through the endogenous SDF—is robust across these institutional variations.

For firms, employer matching contributions offer several advantages. First, matching contributions are

tax-deductible as compensation expense, reducing the firm’s taxable income. Second, employer contri-

butions are exempt from payroll taxes, providing additional tax savings. Third, DC plans impose lower

administrative costs than DB plans by shifting investment risk and longevity risk from the firm to em-

ployees themselves. Fourth, firms retain flexibility to suspend or reduce matching contributions during

economic downturns, unlike the fixed obligations associated with DB pension promises.

For employees, the tax advantages are equally compelling. Employee contributions to 401(k) plans are

made on a pre-tax basis, reducing current taxable income. Investment returns within the account grow

tax-deferred until withdrawal at retirement. Employermatching contributions represent additional com-

pensation that is not taxed until withdrawal.

Despite these tax advantages, the model presented in this paper abstracts from explicit taxation—of firm

income, payrolls, capital, and labor—to focus on the general equilibriummechanisms linking retirement

policy to firm investment. This modeling choice prioritizes parsimony and isolates the core economic

channel: employer matching subsidizes equity demand, which affects equity prices and firm investment

through the cost of capital. Introducing taxation would likely amplify the effects found in this paper,

as the tax deductibility of employer contributions would further reduce the effective cost of matching

for firms, potentially increasing the equilibrium level of matching and magnifying the impact on capital

accumulation.

2.1.2 Preview of Results

To understand themechanisms of study in this paper, we can start with the central asset pricing relation-

ship:

1 = E
[
βu′ (c′)

u′ (c)
·
(
1 +

∂m

∂s

)
︸ ︷︷ ︸

SDF

· p
′ + d′

p︸ ︷︷ ︸
R′

]
(2.1)
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The key insight is that employer matching directly enters the SDF through the term
(
1 + ∂m

∂s

)
, which

captures themarginal subsidy to equity purchases. Whenmatching intensity increases, households face a

stronger incentive to save in order to capture the employer match—leaving matching dollars on the table

is equivalent to forfeiting free money. The desire not to leave money on the table leads households to

purchase more equity earlier in the life cycle, tolerating lower market returns because their effective re-

turns inclusive of thematch remain attractive. Since the asset pricing equationmust hold in equilibrium,

an increase in the SDF forces equilibrium returns R′ to fall to maintain the equality. This mechanism

operates independently of any mechanical dividend effects: the return decline reflects the endogenous

adjustment of the pricing kernel, not a reduction in cash flows. The firm, observing this lower cost of

capital, optimally responds by increasing investment in physical capital.

To establish the core mechanism transparently, I first derive closed-form analytical results in a simplified

two-period model without aggregate risk. In this parsimonious setting, I show that employer match-

ing unambiguously increases the SDF, reduces equilibrium equity returns, and stimulates firm capital

investment. The analytical results reveal the key economic forces at work: matching subsidizes equity

purchases, inducing households to tolerate lower returns, raising the SDF. Facing a higher SDF, the firm

discounts future dividends less heavily and optimally increases investment in physical capital and there-

fore production. These closed-form results provide clean intuition for the mechanism and demonstrate

that the qualitative effects are robust features of themodel structure rather than artifacts of specific func-

tional forms or calibration choices.

The quantitative importance of these effects is assessed through numerical simulation of the full stochas-

tic model with long-lived households and aggregate productivity risk. I solve the model using finance-

informed neural networks (FINNs) and calibrate household preferences, firm technology, and match-

ing parameters to realistic values. Simulating the economy for extended horizons allows me to compute

ergodic distributions of all endogenous variables andmeasure the long-run effects of employer matching

on capital accumulation, output, wages, and welfare. The numerical results confirm and quantify the

analytical predictions: introducing employer matching at empirically realistic levels reduces equilibrium
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equity returns by 79 basis points, increases the aggregate capital stock by 6.1%, and raises wages by 1.7%. I

also conduct comparative statics over the matching rate ψ, demonstrating that the effects scale with the

generosity of the matching policy. These quantitative results demonstrate that employer matching has

first-order macroeconomic effects that extend well beyond simple redistribution between shareholders

and workers.
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2.2 Related Literature

This paper contributes to several distinct but interconnected literatures spanning macroeconomics, fi-

nance, and household portfolio choice. The central methodological contribution—pairing stochastic

overlapping generations with neoclassical firm investment to study how retirement policy affects corpo-

rate capital accumulation through endogenous equity pricing—bridges literatures that have traditionally

developed separately.

2.2.1 Overlapping Generations Models and Retirement Policy

The foundation of this work rests on the long tradition of overlapping generations models pioneered

by Samuelson (1958). The existence and characterization of Markov equilibria in stochastic OLG mod-

els has been studied extensively by Spear and Srivastava (1986), Duffie et al. (1994), and Citanna and

Siconolfi (2010), providing the theoretical underpinnings for the equilibrium concept employed in this

paper.

Within the OLG framework, a substantial literature examines how retirement policies affect aggregate

savings and capital accumulation. Gomes and Michaelides (2003) develop a general equilibrium life-

cycle model with incomplete markets and heterogeneous agents to evaluate DB versus DC pension sys-

tems, finding that social welfare is maximized at small positive DB levels due to intergenerational risk-

sharing. Coimbra et al. (2023) show that the historical shift from DB to DC systems reduced the eq-

uity risk premium-not dissimilar to my result that employer matching lowers equity returns (though my

model does not have a risk-free asset). Krueger and Kubler (2006) study Pareto-improving social secu-

rity reformswhen financialmarkets are incomplete, demonstrating that retirement policies can have first-

order welfare consequences through general equilibrium channels. While I abstract from social security

to isolate the employer matching mechanism, the question of how retirement subsidies affect aggregate

savings and capital accumulation remains central to both analyses. Krueger and Kubler (2002) analyze

intergenerational risk-sharing via social security in incomplete markets, highlighting the asset pricing im-
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plications of retirement policy—a theme that carries through to the employer matching context studied

here. Hosseini and Shourideh (2019) develop a quantitative framework to study optimal retirement fi-

nancing reforms. Their emphasis on the general equilibrium interactions between retirement policy,

capital accumulation, and welfare aligns closely with the mechanism I study, though they focus on social

security design rather than employer matching.

More recently, A. Zhang (2022) studies the general equilibrium implications of target-date funds, show-

ing that innovations in retirement finance can affect real corporate behavior through general equilibrium

price effects. Their finding uses the restrictive portfolio shares of target-date funds as the mechanism for

rebalancing and repricing in equilibrium, similar in spirit to the mechanism I identify with employer

retirement matching.

The microfoundations of firms’ decisions to sponsor retirement plans—including tax incentives, ad-

ministrative costs, and labor market competition—have been studied by Bloomfield et al. (2025), who

document that tax credits have limited take-up among small firms and identify barriers to retirement

plan adoption. I take these microfoundations as given, focusing instead on the general equilibrium con-

sequences of matching once it is in place. This modeling choice allows me to isolate the core mechanism

linking retirement policy to firm investment while abstracting from the complex incentives governing

plan adoption. Future work could usefully integrate both margins by endogenizing firms’ matching de-

cisions through a bargaining or competition framework.

2.2.2 Household Portfolio Choice and Retirement Savings Behavior

The household side of the model builds on the extensive literature examining optimal portfolio choice

over the life cycle. Duarte et al. (2021) develop amachine-learning approach to solve for optimal portfolio

allocation across stocks, bonds, and liquid accounts in a realistic life-cycle model, finding substantial wel-

fare losses from using simple age-based target-date fund rules rather than customizing to individual cir-

cumstances. The literature has long recognized thatmany households undersave for retirement relative to

normative benchmarks, motivating policies to encourage greater retirement contributions. Bhargava and
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Conell-Price (2022) conduct a field experiment among 401(k) participants and document present bias in

retirement savings decisions, while Laibson (1996) shows theoretically how hyperbolic discounting gen-

erates undersaving. Campbell (2016) argues that behavioral biases in financial decision-making justify

paternalistic interventions like automatic enrollment and employer matching. In this context, employer

matching can be understood as a policy response to undersaving: by subsidizing contributions, matching

provides an extra incentive to overcome present bias. My model abstracts from behavioral frictions by

assuming time-consistent preferences, allowing me to isolate the pure general equilibrium pricing effect

ofmatching frombehavioral responses. The finding thatmatching generates substantial capital accumu-

lation and welfare gains even in the absence of behavioral frictions suggests that the mechanism operates

independently of whether households are initially undersaving.

Dammon, Spatt, and H. H. Zhang (2004) study optimal asset location and allocation when investors

face differential tax treatment across taxable and tax-deferred accounts, demonstrating that tax consid-

erations generate substantial portfolio distortions. While I abstract from explicit taxation to maintain

tractability, the economic intuition of mymodel would remain in a more realistic taxation environment.

Gomes, Michaelides, and Polkovnichenko (2009) also explores optimal asset location under taxable and

tax-deferred retirement accounts, focusing largely on direct versus indirect ownership of stocks.

2.2.3 Asset Pricing in Overlapping Generations Economies

A central contribution of this paper is demonstrating how employer matching affects equilibrium asset

prices through the SDF. The relationship between demographic structure, household portfolio choice,

and asset prices in OLG models has been studied extensively. Constantinides, Donaldson, and Mehra

(2002) show that borrowing constraints on young households can help resolve the equity premium puz-

zle by reducing equity demand from high-marginal-utility young agents, thereby increasing equilibrium

risk premia. Storesletten, Telmer, and Yaron (2007) extend this analysis to incorporate idiosyncratic in-

come risk, demonstrating that household heterogeneity in risk exposure affects equilibrium asset prices

and quantities.
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Gârleanu and Panageas (2015) analyze howheterogeneity in risk aversion and age affects portfolio compo-

sition and equilibrium returns, coining the phrase ‘young, old, conservative, and bold’ to describe how

life-cycle patterns in risk tolerance shape the cross-sectional distributionof equity holdings. Geanakoplos,

Magill, and Quinzii (2004) study how demographic shifts affect long-run stock market returns through

cohort-specific demand for equity, finding that predictable changes in the age distribution generate slow-

moving variation in equilibrium prices.

In incomplete markets settings like the one I study, the SDF is not unique, raising the question of which

discount rate firms should use when evaluating investment projects. Hansen and Jagannathan (1991) de-

velop the concept of an efficient SDF that minimizes the secondmoment subject to satisfying the pricing

restriction, providing a disciplined approach to aggregating heterogeneous household marginal rates of

substitution. I adopt their methodology to construct the firm’s discount rate, ensuring computational

stability while accurately reflecting household pricing.

2.2.4 Neoclassical Firm Investment and the Cost of Capital

On the firm side, the model builds on the q-theory of investment developed by Tobin (1969) and Jorgen-

son (1963),with the formal dynamic investment problem following Hayashi (1982).

The integration of households following the overlapping generations structurewith firmdynamic invest-

ment decisions through the cost of capital is less common in the literature. MostOLGmodels either take

firm investment as exogenous or study it in simplified static settings, and many neoclassical investment

models of the firm take the firm’s discount rate as an exogenously set parameter. By pairing a sixty-period

OLG model with a neoclassical investment problem and solving for the joint equilibrium using neural

networks, I bridge the household and firm sides of the economy in a quantitatively realistic framework.

This integration is essential for capturing the general equilibriummechanism: employermatching affects

household equity demand, which alters equilibrium prices, which changes the SDF used by firms, which

ultimately affects investment and real outcomes.
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2.2.5 Computational Methods: Deep Learning for Economics

The computational approach employed in this paper—finance-informed neural networks (FINNs)—

builds on recent advances in applying deep learning to solve economic models. Raissi, Perdikaris, and

Karniadakis (2019)pioneer physics-informed neural networks (PINNs),which embed partial differential

equations directly into the loss function, allowing neural networks to approximate solutions to complex

PDEswithout requiring large datasets. Azinovic, Gaegauf, and Scheidegger (2019) adapt this approach to

economics, developing ‘deep equilibriumnets’ that solve for global policy functions in dynamic stochas-

tic general equilibrium models by embedding equilibrium conditions into the training objective. Azi-

novic and Zemlicka (2024),whose methodology I follow closely, apply FINNs to stochastic overlapping

generations models and demonstrate that the approach can handle high-dimensional state spaces and

non-convexities that traditional projection methods struggle with.

Morebroadly, Fernández-Villaverde (2025)provides a comprehensive introduction todeep learningmeth-

ods for solving economic models, emphasizing that neural networks offer a flexible alternative to tradi-

tional value function iteration, perturbation, and projection methods. L. Maliar, S. Maliar, andWinant

(2021) compare deep learning approaches to other solution methods across a range of macroeconomic

models, finding that neural networks perform particularly well in high-dimensional settings with non-

linearities—precisely the environment studied in this paper. Han, Yang, and E (2021) develop special-

ized methods for summarizing rich economic information in heterogeneous agent models with aggre-

gate shocks by endogenously identifying key moments of the model, providing further evidence that

deep learning can tractably handle the computational challenges arising in modern quantitative macroe-

conomics.
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2.3 TheModel

I pair an overlapping generations model with one representative type per generation on the household

side with a neoclassical model of firm investment on the production side. There are I periods of life for

each generation. Lifetimes are deterministic.

Available for purchase at all stages of life are financial assets for the purpose of consumption smoothing

and retirement financing, taking the form of equity shares in the representative firm. Discussion of these

assets is also included below. Households inelastically supply labor to the firm in exchange for competi-

tively determined wages for labor.

The firm has already had an (unmodeled) initial equity issuance with the number of shares normalized

to 1. Households trade fractional shares at competitively determined prices, and the shares entitle the

households to one-period forward dividends.

For any variable x, subscripts xi,t means the value of x for the i-th oldest generation; i.e. the generation

born at t − i. Additionally, for any lower-case i, t-subscripted variable, let the upper-case script variable

denote its i-vector: Xt := {xi,t}i.

2.3.1 Market Structure

The source of aggregate risk in the economywill be the total factor productivity affecting firm output, an

autoregressive process of degree one –AR(1) – in logs. Log-TFP follows the following process:

logZt+1 = ρZ logZt + σZϵt+1 (2.2)

where 0 < ρZ < 1 so that logZ has a stationary distribution and the shock ϵ is drawn from a standard

Normal Distribution: ϵZ ∼ N (0, 1). Capital depreciation will also depend on the aggregate shock. In

particular, the stochastic depreciation process will be inversely correlated with the TFP process and will
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be parameterized by ξδ.

δ(Zt) = δ × 2

2 + ξδ(Zt − 1)
(2.3)

Asdiscussed above, Imodel one asset. Households trade shares of equity in the firmwhich are normalized

to one share. Short sales on equity are forbidden, so that si,t ≥ 0 for all i, t.

The gross return on equity is given asRt =
pt+dt
pt−1

where pt is the competitively determined time-t price

of the equity shares and dt is the time-t dividend of the firm. More discussion of the firm will take place

below.

2.3.2 Households

As mentioned above, each generation lives for exactly I periods. Using t as the time index, the index

i ∈ {0, . . . , I − 1} represents age concurrently with time.

Households are endowed with labor efficiency units ℓi over their life-cycle for all i, t.

In each period, households choose optimal consumption and savings in risky equity, subject to the con-

straints as described in the previous section.

Households earn income from wages:

yi,t = wtℓi (2.4)

at wage rate wt per efficiency unit of labor. Additionally, firms contribute retirement savings to house-

holds at a known schedule, matching some fraction ψ ≥ 0 of contribution up to a threshold given as a

percent of income ϕ.

The sequential budget constraints for households alive at time t are thus:

ci,t + ptsi,t = yi,t + (pt + dt)ai,t (2.5)

ai,t = si−1,t−1 +mi−1,t−1 (2.6)
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mi,t = ψmin
{
si,t,

ϕyi,t
pt

}
(2.7)

Since households die with certainty after their last period of life and are endowedwith no financial assets:

s0 = sI−1 = 0 for all t.

Households form utility over lifetime consumption:

U : RI
++ → R

I’ll assume additively time-separable vonNeumann–Morgenstern expected constant relative risk aversion

(CRRA) utility, with coefficient of relative risk aversion γ:

U
(
{ci,t+i}I−1

i=0

)
= Et

I−1∑
i=0

βiu(ci,t+i) : u(c) =


c1−γ−1
1−γ γ ∈ R+ \ {1}

log(c) γ = 1

Then the households’ formal problem can be written as:

max
{ci,t+i,si,t+i}I−2

i=0

{
U({ci,t+i}I−1

i=0 )
}

s.t. (2.8)

ci,t + ptsi,t = yi,t + (pt + dt)

(
si−1,t−1 + ψmin

{
si,t,

ϕyi,t
pt

})
(2.9)

si,t ≥ 0 (2.10)

Let µ be the Lagrange multiplier on the short selling constraint. Households’ optimality conditions are

given by the following Euler equations and KKT conditions:

1 = Et
[
βu′ (ci+1,t+1)

u′ (ci,t)
· pt+1 + dt+1

pt
·
(
1 +

∂mi,t

∂si,t

)]
+ µi,t (2.11)

si,t ≥ 0 (2.12)

µi,tsi,t = 0 (2.13)
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2.3.3 Firms

The economy is populated by a representative firm. The firm hires a measure L of workers and makes

a dynamic investment decision It, accumulating its own stock of capital Kt depreciating at rate δt to

maximize the expected discounted payout of dividends dt at discount rate Λt. The firm pays a convex

adjustment cost Φ(It, Kt) and contributes aggregate matchesMt to employee retirement funds. The

firm takes the equity price pt and thematchesmi,t as given and does not internalize the effect ofmatching

on repricing through the SDF. The firm’s period budget constraint is thus:

dt = Yt − It − wtLt − ptMt − Φ(It, Kt) (2.14)

Yt = ZtF (Kt, Lt) (2.15)

It = Kt+1 − (1− δt)Kt (2.16)

Φ(It, Kt) =
η

2

(
It
Kt

− δ

)2

Kt (2.17)

Mt =
I−1∑
i=0

mi,t (2.18)

The firm’s production technology is Cobb-Douglas with parameter α and Total Factor Productivity

multiplierZ:

F (Kt, Lt) = ZKα
t L

1−α
t (2.19)

and then total output is given as Yt = ZtF (Kt, Lt).

The firm dividends dt are paid to the equity holders every period. The firm discounts its dividends at

the stochastic discount rate of the equity holders, Λt+1. Discussion of its calculation will follow below.

Define the cumulative SDF from s to t as

Λs:t =
t∏

τ=s+1

Λτ (2.20)
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The formal statement of the firm’s problem is then given as:

max
{Lt,It,Kt+1}∞t=0

{
E0

[
∞∑
t=0

Λ0:tdt

]}
s.t. (2.21)

dt = ZtF (Kt, Lt)− It − wtLt − ptMt − Φ(It, Kt) (2.22)

It = Kt+1 − (1− δt)Kt (2.23)

LetQt be the Lagrange multiplier on the law of motion for capital. The solution to the firm’s problem

is the following set of Euler equations:

Qt = Et
[
Λt+1

(
Zt+1FK(Kt+1, Lt+1) + (1− δt+1)Qt+1 − ΦK(It+1, Kt+1)

)]
(2.24)

Qt = 1 + ΦI(It, Kt) (2.25)

The firm labor decision results in a static problem:

ZtFL(Kt, Lt) = wt (2.26)

2.3.4 Market Clearing

The equity and labor markets need to clear:

∑
i

ei,t = 1
∑
i

ℓi,j = Lt = 1 (2.27)

The consumption market will clear via Walras’s Law.

2.3.5 Equilibrium

The equilibrium of study in long-lived stochastic overlapping generations models is that of a recursive

Markov equilibrium.
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Definition 2. The recursive Markov equilibrium is defined by time-homogeneous policy functions for

the purchase and pricing of assets for state variable χ:

{S(χ), I(χ), P (χ), µ(χ)}

where χ ⊇ (A,K, Z) is taken to be at a minimum the lagged asset holdings of all households and the

current realization of the shock. The time-homogeneous policy functions solve the households’ problems and

the firm’s problem. Markets for capital, bonds, and labormust clear. Feasibility arises fromWalras’s Law

and is given by

Yt = Ct + It + Φt

where Ct is aggregate consumption, It is aggregate investment, and Φt is the adjustment cost paid by the

firm in period t.

From equilibrium relationships, a few restrictions can bemade immediately that will assist in computing

the full model. For instance, the wage can be solved as a static problem since the labor supply is inelastic,

so the market-clearing wage is given as:

wt = (1− α)
Yt
Lt

(2.28)

where L =
∑

i ℓi = 1.
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2.4 Two-Period Steady State Equilibrium Analysis

The model’s steady state can be solved in closed form without aggregate risk and with two generational

cohorts: young and old.

2.4.1 Households

A unit mass of identical households lives for two periods. The young household inelastically supplies a

unit mass of labor for competetively determined wagesw. Households choose savings s ≥ 0 and receive

a (capped) savingsmatch:m(s) = ψmin
{
s, ϕ w

p

}
whereψ ≥ 0 is thematch rate parameter andϕ is the

match cap parameter measured as a fraction of wage income valued at the asset price p. The household

budget contraints are given as:

cy = w − ps (2.29)

co = (p+ d)
(
s+m(s)

)
(2.30)

and preferences are logarithmic:

U(s) = log cy + β log co (2.31)

The formal household problem is given as

max
cy ,co,s

{U(s)} subject to budget constraints (2.32)

There are two cases: when s < ϕw
p
will be referred to as Case 1 and when s > ϕw

p
will be Case 2.

Case 1. When s < ϕw
p
, the Euler equation is given as:

p

cy
= β

p+ d

co
(1 + ψ) =⇒ s∗ =

βw

(1 + β)p
(2.33)

Reconciling the bounds, this holds when β < ϕ
1−ϕ .
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Case 2. When s > ϕw
p
, the Euler equation is given as:

p

cy
= β

p+ d

co
=⇒ s∗ =

(β − ψϕ)w

(1 + β)p
(2.34)

Reconciling the bounds, this holds when β > ϕ(1+ψ)
1−ϕ .

Case 3. At the kink, s = ϕw
p
. This occurs when ϕ

1−ϕ < β < ϕ(1+ψ)
1−ϕ .

We can summarize the household demand schedule as:

s∗(p) =



βw

(1 + β)p
, β ≤ ϕ

1−ϕ

ϕw

p
, ϕ

1−ϕ < β < ϕ(1+ψ)
1−ϕ

w(β − ψϕ)

(1 + β)p
, β ≥ ϕ(1+ψ)

1−ϕ

(2.35)

In equilibrium, the asset market must clear: s+m(s) = 1. Using the household demand schedule and

solving for the price p in each regime gives

p∗ =



β(1 + ψ)

1 + β
w, β ≤ ϕ

1−ϕ

(1 + ψ)ϕw, ϕ
1−ϕ < β < ϕ(1+ψ)

1−ϕ

β(1 + ψϕ)

1 + β
w, β ≥ ϕ(1+ψ)

1−ϕ

(2.36)

Finally, substituting themarket-clearing prices back into the demand schedules provides the equilibrium

allocations:

(s∗,m∗) =


( 1

1 + ψ
,

ψ

1 + ψ

)
, β ≤ ϕ(1+ψ)

1−ϕ( β − ψϕ

β(1 + ψϕ)
,
ψϕ(1 + β)

β(1 + ψϕ)

)
, β ≥ ϕ(1+ψ)

1−ϕ

(2.37)
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2.4.2 Representative Firm

Arepresentative firmoperates a constant-returns-to-scaleCobb-Douglas technologywith parameterα ∈

(0, 1):

Y = ZKαL1−α (2.38)

It hires labor L competitively at wage w and owns its capital stockK . Assume no depreciation: δ = 0

so that investment is I = K ′ −K . Dividends are profits net of matches:

d = Y − wL− pm− I (2.39)

wherem ∈ [0, 1] is the per-share matched quantity determined by households and funded by the firm at

market value p. The firm chooses labor quantityL and (forward) capitalK ′ to maximize the discounted

flow of dividends to the owners of the firm. Since this is a model without aggregate risk, the discount rate

of the owners of the firm is the return received by households, the cost of equity:

R =
p+ d

p
(2.40)

The formal statement of the Firm’s Problem is recursively given as:

V (K) = max
L,K′

{
d+

1

R
V ′(K ′)

}
(2.41)

First, the wage is competitively determined as

w = (1− α)ZKα (2.42)

when L = 1. And the firm faces capital Euler equation given by

R = 1 + αZ(K ′)α−1 (2.43)
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We can now substitute equilibrium quantities forwL = (1−α)ZKα back into the firm’s dividend and

use this to simply the cost of equity:

R = 1 +
αZKα

p
−m (2.44)

Nowmoving to steady state so thatK = K ′ and reconciling equations (2.43) and (2.44):

1 +
αZKα

p
−m = 1 + αZKα−1 (2.45)

Recall equation (2.36) from the solution to the household problem and substitute in that w = (1 −

α)ZKα:

p∗ =



β(1 + ψ)

1 + β
(1− α)ZKα, β ≤ ϕ

1−ϕ

(1 + ψ)ϕ (1− α)ZKα, ϕ
1−ϕ < β < ϕ(1+ψ)

1−ϕ

β(1 + ψϕ)

1 + β
(1− α)ZKα, β ≥ ϕ(1+ψ)

1−ϕ

(2.46)

Notice that in all cases, we can express p∗ = c(ψ)Kα where c(ψ) represents the coefficients and c is

strictly increasing in ψ: c′(ψ) > 0. Now substituting p∗ = c(ψ)Kα into (2.45) yields:

αZKα

c(ψ)Kα
−m = αZKα−1 (2.47)

implying

K∗ =

(
αZc(ψ)

αZ −mc(ψ)

) 1
1−α

(2.48)

Theorem 2.4.1 (Matching Raises the Capital Stock). ∂K∗

∂ψ
> 0.

Proof. Define x = K1−α = αZ
αZ
c(ψ)

−m . Then compute:

∂x

∂ψ
= − αZ(

αZ
c(ψ)

−m
)2 ×

(
− αZ

c(ψ)2
c′(ψ)−m′(ψ)

)
> 0 (2.49)
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Notice that the negative signs cancel out, the denominator of the first timemust be positive by positivity

ofK∗, and both c′ andm′ are positive. Since ∂K
∂x

> 0, we have proven the claim.

Theorem 2.4.2 (Matching Lowers the Equilibrium Returns). ∂R∗

∂ψ
< 0.

Proof. Recall equation (2.44) and substitute in the price as before:

R = 1 +
αZKα

p
−m (2.50)

= 1 +
αZKα

c(ψ)Kα
−m (2.51)

= 1 +
αZ

c(ψ)
−m (2.52)

Taking derivatives immediately yields

∂R

∂ψ
= − αZ

c(ψ)2
c′(ψ)−m′(ψ) < 0 (2.53)

Where the same logic as the proof of ∂R∗

∂ψ
< 0 holds.

2.4.3 Marginal vs. Average Tobin’s Q

Starting from (2.45) and collecting like terms:

αZKα−1

(
K

p
− 1

)
= m (2.54)

Notice immediately that in the casewhenψ = 0 =⇒ m = 0 and employers do notmatch, the solution

to equation (2.54) isK∗ = p, the celebrated Hayashi 1982 result. However, with employer matching we

have m > 0 and therefore K∗ > p. The employer matching therefore introduces a wedge between

average andmarginalQ, something that may be of note to empiricists studying corporate finance.
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2.4.4 Worker-FinancedMatch

A potential critique of the baseline model is that the shareholder-financing assumption—whereby em-

ployer matching is paid out of dividends—may mechanically drive the reduction in equilibrium returns

through decreased dividends. To address this concern, I consider an alternative specification in which

workers finance the employermatch through reducedwages rather than shareholders financing it through

reduced dividends. Specifically, I impose the constraint (1−α)Y = wL+ pm, which forces total labor

compensation (wages plus matching contributions) to equal labor’s marginal product in a match-free

policy environment, effectively making workers bear the incidence of the matching cost.

The mathematical derivations that follow demonstrate that even under worker financing, the central

mechanism of the paper remains intact: employer matching still increases the SDF, reduces equilibrium

returns, and stimulates firm capital investment. The key economic insight—thatmatching affects capital

accumulation through endogenous equity pricing and the SDF—is therefore robust to the financing

assumption.

The reason I do not adopt worker financing or shared financing as the primary specification is purely

computational. Under shareholder financing, the wage can be solved statically as wt = (1 − α)Yt/Lt

from the firm’s first-order condition for labor, which greatly simplifies the numerical solution. Un-

der worker financing, the wage becomes a more complex policy function that must satisfy the constraint

(1 − α)Y = wL + pm and therefore depends on the equilibrium matching contribution and equity

price. This requires solving for the wage as part of the policy function rather than as a closed-form static

relationship, increasing the computational burdenwhenusingneural network approximations. Since the

economic mechanism is unchanged, I prioritize computational efficiency by maintaining shareholder fi-

nancing in themain analysis while demonstrating robustness to alternative incidence assumptions below.

While this modeling choicemay affect the quantitative interpretation of the numerical results, it is worth

noting that any quantitative calibration in a tax-free environment necessarily abstracts from first-order

features of actual retirement policy, limiting the precision of welfare calculations regardless of the inci-
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dence assumption. More broadly, microfounding the choice of matching parameters and the source of

financing through explicit bargaining models or contract theory would constitute a rich area for future

research, allowing labor economists and bargaining theorists to build on the general equilibrium frame-

work developed here to endogenize retirement policy design.

To show that the source of financing does not impact the main result, assume that workers fully finance

their retirement match: wL+ pm = (1−α)Y . The firm’s dividend then simplifies to d = Y −wL−

pm = αZKα after steady state is imposed and equilibrium conditions are substituted in. The return

then becomes:

R = 1 +
αZKα

p
(2.55)

while the firm’s Euler equation is unchanged:

R = 1 + αZKα−1 (2.56)

As before, note that we can write p = c(ψ)w. Substituting in the (new) equilibrium restriction that

w = Z(1− α)Kα − pm and then grouping terms for p yields the equilibrium price:

p∗ =
c(ψ)Z(1− α)

1 + c(ψ)m(ψ)
Kα (2.57)

Reconciling equations (2.55) and (2.56) and substituting in (2.57) yields the expression for equilibrium

levels of capital:

K∗ =

(
Z(1− α)

c(ψ)

1 +m(ψ)c(ψ)

) 1
1−α

(2.58)

Carefully accounting for the parameter regions that dictate the values c(ψ) andm(ψ), one can show that

this expression is increasing inψ in equilibrium. Finally, sinceK∗ is increasing inψ it is easy to show that

R is decreasing inψ, which recovers the result from the dividend-financedmatching baselinemodel. The

formal proof is tedious but can be verified by the reader.

64



Chapter 2. Real and Asset Pricing Effects of Employer Retirement Matching

2.5 Sixty-Period Computation

The previous section showed the central mechanism of this paper in closed form, while this section will

quantify the mechanism in a more quantitatively realistic model. The main model objects that need

external calibration from the data are the life-cycle profiles of labor efficiency units. Further details on

those below. Other model parameters are calibrated as follows:

Table 2.1: Calibrated Parameters

Description Symbol Value Target / Source
Periods of life I 60 –
Efficiency units of labor ℓi See Figure (2.1) SCF (2019)
Discount factor β 0.925 –
Relative risk aversion γ 1 –
Capital share (Cobb–Douglas) α 0.30 –
TFPmultiplier Z 101−α Normalization
Adjustment Cost η 2 –
Persistence of log TFP ρZ 0.90 –
Std. dev. of TFP shock σZ 0.0087 std(Zt) = 2%
Average depreciation rate δ 0.10 –
Depreciation sensitivity (agg. risk) ξδ 2 –
Matching Rate ψ {0, 0.5, 1} –
Matching Cap Rate ϕ 0.06 –

It is worth noting a few of the calibrated parameter values.

- β = 0.925 is chosen for two reasons: computational stability and to reflect that one of the stated

goals of employer retirement matching is to incentivize (otherwise impatient) households to save

for retirement earlier. With respect to computational stability, the model’s link between house-

hold’s SDF and the firm’s real decisions loses stability as the households discount by less.

- ψ = 0, 0.5, 1 reflect the following matching offers, common among large employers:

- no matching,

- ‘a match of 50¢ on the dollar, up to 6% of pre-tax income,’ and
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- ‘a dollar-for-dollar match, up to 6% of pre-tax income’

- ξδ = 2 is based on Azinovic and Zemlicka (2024) and troubleshooting to stabilize the firm’s

investment problem with counter-cyclical stochastic depreciation.

- γ = 1 (logarithmic utility, implying unit intertemporal elasticity of substitution) serves both

computational and economic purposes. Computationally, it aids numerical stability by avoiding

extreme curvature in householdmarginal utilities. Economically, it isolates the general equilibrium

pricing effect of employermatching fromconfounding intertemporal substitution responses: with

unit IES, variations in savings behavior across matching regimes arise purely from the matching

subsidy term in the SDF rather than from households adjusting their willingness to substitute

consumption intertemporally in response to changing returns. This parsimonious specification

cleanly demonstrates that the matching mechanism operates through endogenous equity pricing

rather than through household elasticity channels.

2.5.1 Data Sources and Calibration

This section describesmy approach to estimating empirically realistic life-cycle profiles of labor efficiency

units frommicro-data and explains the methodological choices underlying the calibration.

I use the Survey of Consumer Finances (SCF) 2019 release (Board of Governors of the Federal Reserve

System 2019) to construct age-specific labor income profiles, which I use to calibrate the labor efficiency

units{ℓi}i in themodel. I use the 2019 release rather thanmore recent data because it reflects labormarket

conditions prior to theCOVID-19 pandemic, providing amore stable baseline for calibrating steady-state

income profiles.

A well-known feature of the SCF is that it oversamples high-wealth and high-income households to im-

prove estimates of top-tail distributions. While this design is valuable for studying wealth concentration,

it poses challenges for calibrating a representative-agent model intended to capture the behavior of typ-

ical workers. To address this, I truncate the top 15% of the income distribution before constructing the
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age-income profile. This truncation serves two purposes. First, it mitigates the mechanical bias intro-

duced by oversampling: without truncation, the mean income profile would be upward-biased relative

to the population average, distorting the calibration of labor efficiency units. Second, and more impor-

tantly for the economic mechanism of this paper, ultra-wealthy households are unlikely to face binding

employer matching constraints. Employer matching contributions are typically capped at a fraction of

pre-tax income—commonly 6% in practice, reflected inmy calibration ofϕ = 0.06. For householdswith

very high incomes, this cap implies that the absolute dollar value of foregone matching is trivial relative

to total wealth, making it economically implausible that such households would adjust their retirement

savings behavior in response to matching incentives. Put differently, the matching mechanism I study

operates primarily through middle- and upper-middle-income workers who face meaningful tradeoffs

between current consumption and capturing the employer match. By excluding the top 15%, I focus the

calibration on the income range where matching incentives are most likely to bind and affect savings be-

havior. Future work could usefully study heterogeneity in employer matching generosity across income

groups andmodel transitions between income classes and their associated retirement plans, whichwould

allow for richer analysis of howmatching affects wealth inequality andmobility over the life cycle.

Figure 2.1 displays the resulting age-income profile. The profile exhibits the characteristic hump shape

documented extensively in labor economics: income rises steeply from ages 20-40 as workers accumu-

late human capital and climb career ladders, peaks in the mid-40s to early-50s, and declines gradually as

workers approach retirement. The hump shape has direct implications for retirement matching: house-

holds face the highest incentive to match when young, since low incomes means otherwise low savings.

In the model implementation, I normalize these income values so that the labor efficiency units satisfy∑
i ℓi = 1.

Since samples are relatively small when segmented by age, the raw age-income profile is not smooth.

Without smoothing, the resulting life-cycle profile exhibits substantial noise that complicates numeri-

cal solution of the model. Neural networks trained on noisy input data may have difficulty isolating

the equilibrium policy functions from sampling variation, potentially reducing the accuracy of the com-
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puted equilibrium. To address this, I smooth the raw income profile using a cubic polynomial before

feeding it into the model. The cubic specification is parsimonious yet flexible enough to capture the

well-established hump shape: the quadratic term allows the profile to rise and then fall, while the cubic

term provides additional curvature to fit the asymmetric shape of the hump (steep rise, gradual decline).

Higher-order polynomials would risk overfitting the noise inherent in the SCF sample, while lower-order

specifications (e.g., quadratic) fail to capture the asymmetry of the empirical profile. As shown in Figure

2.1, the cubic fit provides a smooth approximation that faithfully represents the hump-shaped pattern

while eliminating high-frequency variation.

Figure 2.1: Age–efficiency profile calibrated to SCF 2019. Values normalized so that
∑

i ℓi = 1.

2.5.2 SolutionMethod: FINNs

The general structure of the algorithm used to solve the fully stochastic model is inspired by Azinovic,

Gaegauf, and Scheidegger 2019 and Azinovic and Zemlicka 2024, though with a few differences detailed

below. For themost up-to-date primer ondeep learning for economics, includingfirst-principles building

of (deep) neural networks, see Fernández-Villaverde 2025.

Following the physics-informed neural networks (PINNs) approach of Raissi, Perdikaris, and Karni-

adakis (2019),which embeds partial differential equations directly into the neural network loss function,

I develop what I term finance-informed neural networks (FINNs). Rather than the PDEs governing

a physical system, FINNs incorporate the equations governing the financial model—Euler equations,

market clearing conditions, and other terms discussed below—as penalty terms in the loss function. This
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approach ensures that the trained FINN respects the economic structure of the problem while approxi-

mating the equilibrium policy functions.

2.5.3 Applications of Domain Knowledge

Naïve machine learning methods excel at finding solutions that adhere to the minimization problem of

the loss function as specified by the user. The upside of this means that economists need not spend

significant time writing the low-level algorithm needed for training the FINN. The downside is that

the landscape may admit low-error pathological ‘solutions’ that evaluate to a very small error but are

economically implausible. Examples of this that I encountered in training often include:

- constant or near-constant predictions (usually the capital level or the price of the equity asset) that

fail to vary with the underlying shock process in any way;

- predictions that vary only as a monotonic transformation of the underlying shock process (if

adding a variance penalty for capital, it refuses to smooth out even in the presence of large ad-

justment costs);

- and other pathological outcomes.

Especially in the stochastic overlapping generations environment where Euler equation iteration is not

necessarily a contraction mapping, these outcomes must be monitored.

To avoid the pathological predictions of the type discussed in the preceding paragraph, I employ the

following custom strategies to augment the off-the-shelf routines available in coding software.

1. Augmenting the state variable with ‘redundant’ information, particularly asset pricing and in-

tertemporal values. Theory indicates that the state variable required for computation of the model

in this paper is Xt = ({ai,t}i, Kt, Zt). In practice, I found that to break the FINN’s patholog-

ical tendency to return predictions that depend only on the shock process itself, including asset

pricing values contributed greatly to the network’s ability to converge to economically plausible
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equilibria. As such, I model the state variable instead as:

Xt = ({ai,t}i,Et−1[Λt], pt−1, Qt−1, Kt, Zt) (2.59)

adding the lagged synthetic risk-free bond price (conditionally expected forward SDF), lagged eq-

uity price, and lagged Tobin’s Q. Note that this approach lies in stark contrast with the model

reduction techniques in the vein of Krusell and Smith 1998: I am actually expanding the compu-

tational model! Along the same vein, I chose to solve for the following policy functions:

Yt = ({si,t}i, pt,Et[Λt+1], It) (2.60)

In the Q-theory framework, I could equivalently have solved for forward capital, Tobin’s Q itself,

or the investment rate It/Kt but found that the FINN was most performant when solving for

the investment level directly. While not strictly necessary, the synthetic bond price (conditionally

expected forward SDF) provides rich information that assists in the simultaneous determination

of the firm’s investment level.

2. Using the loss function to discipline economically plausible outcomes. The formal statement of the

loss function is below, but it can be understood as comprising of these parts:

(a) Themean-square-error (across households and time) of the Fisher-Burmeister transformbe-

tween the Euler equation residual and period savings;

(b) The mean-square-error (across time) of the firm’s Euler equation;

(c) The mean-square-error (across time) of the equity market clearing constraint;

(d) The mean-square-error (across time) of the FINN-predicted synthetic bond price (labeled

ENN
t [Λt+1])1 comparedwith theGauss-Hermite quadrature-computed expected value of the

1Note: this is computed as a scalar output.
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true SDF (labeled Et[Λ∗
t+1])

2; and

(e) Themean-square-error (across time) of the aggregate feasibility constraint. This ensures the

pathological solution of ci,t → 0 for any i, t is not found.

3. Applying the Fisher-Burmeister transformation to eliminate the computation of Lagrange multipli-

ers. Since the agents in the model are constrained to not sell equity short, the Euler equation may

not bind endogenously for all agents. As formulated in the formal model earlier in this paper, this

entails solving for Lagrangemultipliers of each agent, effectively doubling the required state space.

To avoid this, Azinovic and Zemlicka (2024) applies the Fisher-Burmeister transform as follows:

ΨFB(a, b) = a+ b−
√
a2 + b2 (2.61)

which embeds the KKT conditions as a, b ≥ 0 and ab = 0 ⇐⇒ Ψ(a, b) = 0. However, since

the FINN takes derivatives of equilibrium conditions, the Fisher-Burmeister equation becomes

unstable as a, b → 0 jointly: the derivative of the square-root approaches positive infinity. To

stabilize this, I modify the Fisher-Burmeister equation to:

Ψ(a, b;λFB, ϵFB) = λFB

(
a+ b− a2 + b2√

a2 + b2 + ϵ2FB

)
+ (1− λFB)a

+b+ (2.62)

where for this model I set λFB = 0.8 and ϵFB = 10−3.

4. Time t = 0 initialization near or on the equilibrium manifold. Since—as stated previously—

iteration on the Euler equations in stochastic overlapping generations models is not a contraction

mapping, the starting guess is very important to finding equilibria. After each simulation step

of drawing the ergodic time series, I will save and store X as the mean across time of the FINN

inputs. Since the FINN is learning the global policy functions, these values can only be expected

to evaluate correctly on admissible equilibrium values. In the subsequent time series iteration, I
2More on the computation of the state-by-stateΛ∗

t+1 below.
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will initialize endogenous state variables at time t = 0 based on the values inX .

5. Alleviating the sequential bottleneck in data generation for training. Unlike inmanymachine learn-

ing environments, the data on which the algorithm trains for this model is itself generated by the

model. In particular, the policy function predicts forward capital in this model. In order to gener-

ate training data, Imust simulate outcomes of the aggregate risk process alongwith predictions for

forward capital, which become the capital in the next period. Usual sample sizes for models like

this are for around T = 10000 periods. Rather than draw one block of 10000 periods, I instead

draw 100 blocks of 100 periods in parallel, enormously parallelizing the simulation pass for each

loop in the training algorithm.

6. Smoothing out the hardmin function parameterizing the employer match. Using the parameteriza-

tion of the employer match as given in the formal model above leads to instability in training: the

derivative is discontinuous at the kink point. I use the following smooth approximation::

mi,t = ϕ
wtℓi
pt

(2.63)

mi,t = −ψτ log
(
exp
(
−si,t
τ

)
+ exp

(
−mi,t

τ

))
(2.64)

∂mi,t

∂si,t
= ψ

1

1 + exp
(
−mi,t−si,t

τ

) (2.65)

As τ → 0, the matching function approaches the original minimum function and the derivative

approaches the step function. My selected value of τ = 10−3 is small enough to approximate the

match closely, and large enough to maintain smoothness.

2.5.4 FINNArchitecture and Training

As mentioned above, the state variable required for computation of the model in this paper is Xt =

({ai,t}i,Et−1[Λt], pt−1, Qt−1, Kt, Zt), and the predictions are Yt = ({si,t}i, pt,Et[Λt+1], It). The

FINN architecture consists of two hidden layers, each with 100 neurons. With I = 60 periods of life,
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the input layer has dimension 59+5 = 64, and the output layer has dimension 59+3 = 62. I apply the

hyperbolic tangent activation function tanh(·) to the hidden layers, which provides smooth, differen-

tiable nonlinearity necessary for backpropagation through the economic equilibrium conditions. Since

investment and the predicted synthetic bond price must be nonnegative, I apply the softplus activation

function softplus(x) = log(1 + ex) to the output layer segments corresponding to these quantities,

which smoothly enforces the nonnegativity constraint while remaining differentiable everywhere. For

equity, all share values must be bounded in the interval [0, 1] for the market to clear. As such, I apply

the sigmoid nonlinear activation function on the segment of the output layer corresponding to equity

shares.3 Lastly, for the equity price I use economic knowledge of the problem towrite a custom activation

function. Since we know that in the Hayashi (1982) baseline, we should have p = QK and wedges can

drive 0 < p < QK , I evaluate the price of the equity asset as p = (1− σ(·))QK ∈ [0, QK]where σ(·)

is the sigmoid function taking in the raw FINN output. This specification coaxes the FINN not to find

a near-constant solution or one that varies only in the shock process and enforces the economic bounds

on the price.

To ensure stable training and keep inputs in the active region of the tanh(·) activation function (where

gradients aremeaningfully nonzero), I normalize all inputs by dividing by 1+X , whereX is the running

mean of the state variable across training iterations. This normalization prevents vanishing gradients

and avoids division by zero. The network is trained using the Adam optimizer (Kingma and Ba 2014)

with a small learning rate of 10−6 to ensure stability in the presence of the complex, nonlinear economic

constraints embedded in the loss function. Training proceeds for 5,000 episodes, withminibatches of size

100. Crucially, the simulated training data is redrawn after each epoch, ensuring that the network learns

from fresh realizations of the stochastic equilibrium rather than overfitting to a single simulation path.

Across all solvedmodels, the loss function evaluates to approximately 2×10−5 and the Fisher-Burmeister

transform of the Euler equation residual averages approximately 0.35% per household, indicating that the

trained networks accurately satisfy the equilibrium conditions.
3The sigmoid function is given as σ(x) = 1

1+e−x . For the sake of full transparency, I adjust this by a ‘temperature’ of 2
so that I actually evaluate σ(x/2), which helps push some values closer to 0.
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Expectations in the Euler equations and forecasts of future state variables are computed using Gauss-

Hermite quadrature with 15 nodes. Table 2.2 reports the computational environment and runtime statis-

tics. Training each model to convergence requires approximately 30 minutes on consumer-grade hard-

ware. Unlike machine learning applications that require large pre-existing datasets, the FINN approach

generates its own training data through simulation. Thismeans that thememory bottleneck is the FINN

size rather than dataset size, allowing the entire training process to fit comfortably within the VRAM

limits of consumer GPUs. This demonstrates the computational accessibility of the FINN approach for

large-scale stochastic OLG models without requiring specialized high-performance computing infras-

tructure. I simulate the training data on the CPU (which is faster at this sort of task) and train the FINN

(constructing economic quantities and computing loss function, evaluating the parameters step) on the

GPU.

Table 2.2: Computational Environment and Performance

Hardware
Processor 12th Gen Intel i9-12900KF (24) @ 5.100GHz
GPU NVIDIA GeForce RTX 3080 with 8GB of VRAM
RAM 32 GB

Performance
Approximate training time per model 30 minutes
Training episodes 5,000
Minibatch size 100
Quadrature nodes 15 (Gauss-Hermite)
Approximate Euler residual 0.35%
Approximate Loss function value 2× 10−5

We can formally define the FINN parameterized by Θ as a function that maps the state variable to the

policy functions:

VΘ(·) : Xt 7→ Yt

where Xt = ({ai,t}i,Et−1[Λt], pt−1, Qt−1, Kt, Zt) represents the complete state of the economy (all

agents’ asset holdings including lagged prices and Tobin’s Q, firm capital stock, and the aggregate pro-

ductivity shock) and Yt = ({si,t}i, pt,Et[Λt+1], It) represents the equilibrium policy functions (all
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agents’ optimal equity share purchases, the equity price, the predicted forward SDF, and firm invest-

ment). The neural network VΘ thus approximates the time-homogeneous Markov equilibrium policy

functions that characterize the recursive competitive equilibrium defined earlier.

Critically, given the state variableXt and the FINN’s predicted policy functionsYt, I can recover all eco-

nomicquantities needed to evaluate equilibriumconditionsusing thebudget constraints,market clearing

conditions, and firm optimality conditions from the formalmodel. Specifically: the firm’s labor demand

and wage wt are determined by the static first-order condition wt = (1 − α)Yt/Lt given capital stock

Kt and inelastic labor supply; these prices combinedwith the exogenous efficiency units ℓi and predicted

equity shares si,t determine household incomes and the employer matching contributionsmi,t; Tobin’s

Q is recovered from the firm’s Euler equation asQt = 1+ΦI(It, Kt); and finally the household budget

constraints then back out consumption ci,t for all agents and the firm’s budget constraint determines

dividends dt. This closed-form recovery of all equilibrium objects from (Xt,Yt) is what allows the loss

function to be evaluated purely as a function of the neural network’s inputs and outputs, without re-

quiring additional solution steps within each training iteration.

The loss function can be evaluated as

LΘ({Xt,Yt}t) = log

(
1+

1

T (I − 1)

∑
i,t

Ψ

(u′)−1
(
βE
[
u′(ci+1,t+1) ·

(
1 +

∂mi,t

∂si,t

)
· pt+1+dt+1

pt

])
ci,t

− 1, si,t

2

+
1

T

∑
t

(
E [Λt+1 (Zt+1FK(Kt+1, Lt+1)− ΦK(It+1, Kt+1) + (1− δt+1)Qt+1)]

Qt

− 1

)2

+
1

T

(∑
i

(si,t +mi,t)− 1

)2

+
1

T

(
ENN
t [Λt+1]− Et[Λ∗

t+1]
)2

+
1

T

∑
t

(∑
i ci,t + It + Φt

Yt
− 1

)2
)

(2.66)

where the five terms inside the logarithm correspond to: (1) the mean-square-error across all households
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and time periods of the Fisher-Burmeister transformed Euler equation residuals, ensuring that the first-

order conditions for household optimization are satisfiedwith the employermatchingwedge ∂mi,t/∂si,t

properly embedded; (2) themean-square-error of the firm’s Euler equation for capital investment, ensur-

ing Tobin’s Q satisfies the optimality condition; (3) the mean-square-error of the equity market clearing

constraint, ensuring all shares are held by households; (4) the mean-square-error between the FINN-

predicted synthetic bond price (expected forward SDF) and the Hansen-Jagannathan efficient SDF in

expectation; and (5) the mean-square-error of the aggregate resource constraint, ensuring consumption,

investment, and adjustment costs sum to output and thereby ruling out pathological solutions where

consumption approaches zero. Together, these five components discipline the neural network to find

economically plausible solutions that satisfy household and firm optimizations, market clearing, and cor-

rectly aggregate heterogeneous household-implied SDFs.

The outer logarithmic transformation log(1 + ·) serves an important numerical stability purpose dur-

ing training. In early training iterations when the network parameters are far from equilibrium, the raw

loss terms inside the parentheses can be very large, potentially causing gradient explosion and numerical

overflow. The logarithmic transformation compresses these large values, preventing the loss from grow-

ing unboundedly and ensuring stable gradient-based optimization. Conversely, when the network has

converged and the raw loss is very small (near zero), the logarithm satisfies log(1 + x) ≈ x for small x,

meaning that the transformation becomes approximately linear and does not distort the loss landscape

near the optimum. This design ensures stable training throughout the optimization process while pre-

serving sensitivity to small equilibrium violations once the network approaches convergence.

Finally, we have all the pieces in place to define the formal problem solved by the FINN training algo-

rithm:

Θ∗ = arg min
Θ

LΘ({Xt,Yt}t) (2.67)

where the set of neural network parametersΘ∗ will be discovered through the training routine specified

in code, usually a modification of stochastic gradient descent such as the Adam optimizer. The trained

FINN VΘ∗ then provides the solutions to the economic model: for any state Xt, the equilibrium policy
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functions are given by Yt = VΘ∗(Xt), and all other equilibrium objects (consumption, wages, divi-

dends, matching contributions) can be recovered algebraically from the budget constraints and market

clearing conditions as described above. By minimizing the loss function—which embeds the economic

equilibrium conditions including the employer matching mechanism and firm investment optimality—

the FINN training algorithm effectively solves for the recursive Markov equilibrium of the stochastic

overlapping generations model with endogenous firm investment and retirement matching.

2.5.5 Computation of an Efficient SDF for the Firm’s Euler Equation

Choosing ‘an’ appropriate SDF for use by the firmwhendiscounting future dividends is a difficult task in

this incomplete markets model, as the SDF is not unique. Furthermore, constraints faced by households

and the wedge resulting from the employer match means that household marginal rates of substitution

may not agree.

A numerically stable solution fromHansen and Jagannathan 1991 (HJ) is to pick the most efficient SDF

laying in the span of the endogenous household intertemporalmarginal rates of substitution (MRS) that

satisfies the pricing restriction.

At each time t, let Λs,t = {Λs,t,i}i ∈ RI−1 denote the vector of household SDFs (marginal rates of

substitution) across I households for quadrature node indexed by s = 1, . . . , S:

Λs,t+1,i+1 = β
u′(ci+1,t+1|Zt+1 = Zs)

u′(ci,t)
·
(
1 +

∂mi,t

∂si,t

)
(2.68)

LetRs,t denote the gross returnonequity at nodes. Thequadratureweights are denotedπ = (π1, . . . , πS)

with
∑

s πs = 1. Define the pricing vector as

bt = Eπ[Λs,tRs,t] ∈ RI−1 (2.69)
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Define the second-moment matrix of household SDFs:

Σt =
S∑
s=1

πs Λs,tΛ
′
s,t ∈ R(I−1)×(I−1) (2.70)

Σt = Σt + γtI, γt =
10−4Tr(Σt)

I
(2.71)

To ensure numerical stability (since Σt is low rank when the number of quadrature nodes is less than

the number of households), a small ridge γt in the diagonals (I being the identity matrix) is added to

regularize before inverting the second-moment matrix.

The HJ problem is

min
ωt

{
1

2
ω′
tΣtωt

}
subject to Eπ[ω′

tΛs,tRs,t ] = 1. (2.72)

The solution can be given in closed form:

ω∗
t =

(Σt)
−1bt

b′t(Σt)−1bt
∈ RI−1 (2.73)

Finally, the implied firm SDF at each state (s, t) is

Λ∗
s,t = (ω∗

t )
′Λs,t ∈ R (2.74)

Byconstruction, theprojection enforces the asset pricing restrictionwithin the spanofhouseholdSDFs:

Eπ
[
Λ∗
tRt

]
= 1, Λ∗

s,t ∈ span {Λs,t} (2.75)

meaning that the SDFused by the firm is a linear combination of endogenous householdMRS and there-

fore accurately reflects household pricing, while the efficiency of the SDF (minimizing the second mo-

ment)means that it remains computationally stable and is robust to abrupt changes to theMRS of indi-

vidual households (which are common in early training).
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2.5.6 Results

The numerical results confirm the analytical predictions from the two-period model and reveal substan-

tial quantitative effects of employer matching on asset prices, real outcomes, and welfare. I simulate the

economyunder threematching regimes: nomatching (ψ = 0), 50-cent-on-the-dollarmatching up to 6%

of income (ψ = 0.5, ϕ = 0.06), and dollar-for-dollar matching up to 6% of income (ψ = 1, ϕ = 0.06).

These parameterizations correspond to common employer matching policies observed in practice. For

each regime, I compute ergodic distributions by simulating trajectories of 100,000 periods post-training

and report unconditional means.

Table 2.3 presents the asset pricing outcomes. The central mechanism of the paper operates precisely

as predicted: employer matching raises the SDF and lowers equilibrium equity returns. Moving from

no matching to dollar-for-dollar matching increases the expected SDF by 68 basis points (from 0.9168

to 0.9237), reflecting that households become more patient when facing stronger incentives to save in

order to capture employer contributions. This increase in the SDF directly translates into lower equilib-

rium returns. The average equity return falls by 79 basis points (from 9.08% to 8.29%)when introducing

dollar-for-dollar matching, with the 50-cent match producing an intermediate decline of 47 basis points.

The mechanism here is transparent: households are willing to accept lower market returns because their

effective returns—inclusive of the employer match subsidy—remain attractive. From the household’s

perspective, even though market returns have fallen, the match subsidy more than compensates, mak-

ing equity purchases worthwhile. Importantly, this return decline is not a mechanical consequence of

reduced dividends, but rather reflects the endogenous adjustment of the pricing kernel.

The lower cost of capital induced by employer matching stimulates firm investment and raises the ag-

gregate capital stock, as shown in Table 2.4. With dollar-for-dollar matching, the capital stock increases

by 6.1% relative to the no-matching baseline (from 19.181 to 20.345). This increased capital accumula-

tion reflects the firm’s optimal response to facing a higher SDF: when future dividends are discounted

less heavily, the firm finds it profitable to increase investment in physical capital. The 50-cent match
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Table 2.3: Asset Pricing Outcomes Across Economies (ψ values)

ψ = 0 ψ = 0.5 ψ = 1

Average return (%) 9.08 8.61 8.28
– -47 bps -79 bps

Volatility (%) 0.54 0.57 0.70
– +3 bps +16 bps

E[SDF] 0.9168 0.9208 0.9237
– +39 bps +68 bps

produces an intermediate capital increase of 3.5%, demonstrating that the effect scales smoothly with

matching generosity. The increase in capital stock raises output through the Cobb-Douglas production

function: dollar-for-dollar matching increases output by 1.7% (from 12.167 to 12.379), while the 50-cent

match raises output by 1.0%. Since labor is supplied inelastically at L = 1 and capital and labor are

complements in production, the higher capital stock raises the marginal product of labor proportion-

ally, increasing equilibrium wages by the same 1.7% for dollar-for-dollar matching (from 8.517 to 8.665)

and 1.0% for the 50-cent match. These wage gains represent a general equilibrium spillover from the

matching policy: all workers benefit from higher wages due to capital levels rising, not just those who

directly receive employer matches. This finding suggests that employer matching may have progressive

distributional consequences beyond the direct transfer to participants.

Table 2.4: Real Outcomes Across Economies (ψ values)

ψ = 0 ψ = 0.5 ψ = 1

Output 12.167 12.291 12.379
– +1.0% +1.7%

Capital 19.181 19.856 20.345
– +3.5% +6.1%

Wage 8.517 8.604 8.665
– +1.0% +1.7%

Table 2.5 reports consumption-equivalent welfare gains for a newborn household entering the econ-

omy. Dollar-for-dollar matching generates a 2.6% consumption-equivalent welfare gain relative to the

no-matching baseline, while 50-cent matching produces a 0.3% gain. These welfare gains reflect the in-

terplay of several economic forces. Employer matching induces households to tilt their savings profiles
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earlier in the life cycle, purchasing equity shares at younger ages when employer contributions subsidize

these purchases. This earlier tilting of the savings profile is directly consistent with the increase in the

SDF documented in Table 2.3: matching effectively simulates increased patience, making households be-

have as if they are more forward-looking and therefore finding it optimal to save earlier in life to capture

subsidized returns. Since the total number of equity shares is fixed at one, this intertemporal realloca-

tion of share ownershipmeans that households withmatching hold a larger fraction of the firm earlier in

life, when their marginal utility of consumption is higher and their discount factor weights consumption

more heavily. This front-loading of equity ownership enables households to finance steeper consump-

tion profiles that deliver more utility in earlier, less-discounted periods of life.

Table 2.5: Consumption-Equivalent Welfare Across Economies (ψ values)

ψ = 0 ψ = 0.5 ψ = 1

Expected Lifetime Utility -30.271 -30.229 -29.926
CEW – +0.3% +2.6%

The substantial positivewelfare gains reportedhere indicate that the intertemporal consumption smooth-

ing benefits andwage spilloversmore than compensate for the return reduction, particularly for newborn

householdswhohave long horizons overwhich to benefit from the tilted savings profile andhigherwages.

The convexity of the welfare gains with respect to matching intensity (0.3% for ψ = 0.5 but 2.6% for

ψ = 1) suggests that more generous matching policies generate disproportionately large welfare im-

provements, potentially due to nonlinearities in howmatching incentives interact with life-cycle savings

behavior.

Figures 2.2, 2.3, and 2.4 display the expected life-cycle profiles of the matching wedge, savings, and con-

sumption across matching regimes, revealing how households adjust their intertemporal decisions in re-

sponse tomatching incentives. Figure 2.2 shows thematchingwedge ∂mi/∂si that appears in the house-

hold Euler equation, representing themarginal subsidy to equity purchases. Thewedge is identically zero

throughout life for the no-matching economy, confirming that households face no distortion to their sav-

ings decisions. With matching, the wedge is largest at the beginning of life and declines monotonically
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Figure 2.2: Expected Life-Cycle MatchingWedge ∂mi/∂si Across Economies (ψ values)

Figure 2.3: Expected Life-Cycle Savings Profile Across Economies (ψ values)

over the life cycle, reaching near-zero by around age 40 (period 20) as households accumulate sufficient

assets that their marginal contributions are above the matching cap. This monotonically decreasing pat-

tern reflects that young households with low asset stocks have marginal contributions below the cap and

therefore receive the full marginal match subsidy on additional equity purchases, while older households

with accumulated wealth find their marginal contributions constrained by the cap, causing thematching

wedge to disappear from their Euler equations. Importantly, the wedge is uniformly larger for dollar-for-

dollar matching than for the 50-cent match at every age, showing that more generous matching policies

create stronger incentives to shift savings earlier in the life cycle. This front-loaded, age-varying subsidy

structure directly explains the steepening of early-life savings documented in Figure 2.3.

Figure 2.3 shows that employer matching induces households to accumulate equity earlier in the life cy-

cle and sustain higher savings throughout working years, precisely when the matching wedge is active.
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Figure 2.4: Expected Life-Cycle Consumption Profile Across Economies (ψ values)

In the no-matching economy, the savings profile exhibits the standard hump shape: households gradu-

ally build up retirement wealth during their working years, peak around age 50-55, and then decumulate

in retirement. With matching, this profile shifts upward and becomes steeper, particularly during the

early working years when the matching wedge in Figure 2.2 is largest. The effect is most pronounced

for dollar-for-dollar matching, where households accumulate substantially more wealth early in life to

maximize the capture of employer contributions while the wedge remains active. This pattern confirms

the mechanism highlighted in the introduction: households tolerate lower equilibrium returns because

they are effectively earning higher returns inclusive of the match subsidy shown in Figure 2.2, making

it optimal to save more despite the general equilibrium price adjustment. Figure 2.4 shows the corre-

sponding consumption profiles. Together, these life-cycle profiles illustrate that employer matching fun-

damentally reshapes the timing of savings and consumption decisions, with households responding to

the front-loaded matching wedge by accelerating savings during early working years and enjoying higher

lifetime consumption as a result of both direct transfers and general equilibrium wage spillovers.
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2.6 Conclusion

This paper studies the general equilibrium effects of employer retirement matching on firm investment,

asset prices, andmacroeconomic outcomes. The central premise is that employermatching contributions

subsidize workers’ equity purchases, creating a wedge in the household Euler equation that increases

the SDF. As households become effectively more patient—eager to capture employer contributions that

would otherwise be left on the table—they tolerate lower equilibrium returnswhile still earning attractive

effective returns inclusive of thematch subsidy. This increase in the SDF reduces the firm’s cost of capital,

stimulating investment in physical capital and raising aggregate output and wages. The key question is

whether this mechanism generates meaningful macroeconomic effects or merely redistributes resources

from shareholders to workers.

I establish the core mechanism analytically in a two-period deterministic model without aggregate risk.

The closed-form results demonstrate that employermatching unambiguously increases the SDF, reduces

equilibrium equity returns, and raises the capital stock. These analytical predictions hold under both

dividend-financed matching (the baseline specification) and a robustness check with worker-financed

matching, confirming that the results do not arise mechanically from reduced dividend payments but

rather reflect the endogenous adjustment of the pricing kernel through household savings behavior. The

two-period model provides transparent intuition for the economic forces at work and shows that the

qualitative effects are robust features of the model structure.

To quantify themacroeconomic importance of employermatching, I solve a sixty-period stochastic over-

lapping generations model paired with a neoclassical model of firm investment featuring convex adjust-

ment costs and aggregate productivity risk. The computational challenge lies in solving for equilibrium

policy functions in a high-dimensional state space with heterogeneous households whose marginal rates

of substitution differ due to binding short-sale constraints and the matching wedge. I employ finance-

informed neural networks (FINNs) to approximate the global policy functions, embedding household

Euler equations, firm optimality conditions, and market clearing constraints directly into the loss func-

84



Chapter 2. Real and Asset Pricing Effects of Employer Retirement Matching

tion. To aggregate heterogeneous household SDFs into a single endogenous discount rate for the firm’s

investment problem, I construct the Hansen-Jagannathan efficient SDF that lies in the span of house-

hold marginal rates of substitution while satisfying the asset pricing restriction. This approach ensures

computational stability and accurately reflects household pricing despite heterogeneity in savings behav-

ior.

The numerical results confirm and quantify the analytical predictions. Introducing dollar-for-dollar

employer matching at realistic parameter values reduces equilibrium equity returns by 79 basis points,

increases the aggregate capital stock by 6.1%, and raises output and wages by 1.7%. The effects scale

smoothly with matching generosity: 50-cent-on-the-dollar matching produces intermediate effects of

47 basis points lower returns and 3.5% higher capital. Life-cycle profile analysis reveals that the match-

ing wedge ∂m/∂s is largest early in life and declines monotonically as households accumulate assets and

their marginal contributions rise above the matching cap, causing the wedge to vanish from the Euler

equation. This front-loaded subsidy structure induces households to accelerate equity purchases during

early working years, tilting savings profiles earlier and enabling steeper consumption profiles that deliver

more utility in less-discounted periods. Newborn households entering an economywith dollar-for-dollar

matching experience consumption-equivalentwelfare gains of 2.6% relative to a no-matching baseline, re-

flecting the combined benefits of intertemporal consumption smoothing and general equilibrium wage

spillovers that more than offset lower equilibrium returns.

These findings demonstrate that employer matching has first-order macroeconomic effects that extend

well beyond simple redistribution between shareholders and workers. By subsidizing household equity

demand, matching increases the SDF and lowers the cost of capital, fundamentally reshaping the in-

vestment opportunity set available to firms. The resulting capital deepening raises wages for all workers

—not just those receiving matches—illustrating a general equilibrium spillover channel through which

retirement policy affects macroeconomic outcomes. More broadly, this paper contributes to the litera-

ture on the real effects of financial frictions and household portfolio choice by showing that seemingly

micro-level retirement policies can have substantial aggregate implicationswhen analyzed in general equi-
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librium. Future research could usefully extend this framework to incorporate heterogeneity in matching

generosity across firms and income groups, endogenize the firm’s choice of matching policy through

bargaining or tax incentives, and study the transition dynamics as the economymoves betweenmatching

regimes.
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Pricing

3.1 Introduction

The Heath-Jarrow-Morton (HJM) framework (Heath, Jarrow, and Morton 1992) is the most general

arbitrage-free approach to pricing interest rate derivatives, specifying stochastic evolution for the entire

forward curve simultaneously and nesting earlier short-rate models as special cases. Under risk-neutral

valuation, a derivative with contract features Ξ (including expiry T ) and payoff at expiry h(T, f ; Ξ) de-

pending on the forward curve f(t, T ) has time-t price given by the stochastic expectation:

V (t) = E
[
exp
(
−
∫ T

t

r(s)ds
)
h(T, f ; Ξ)

]
(3.1)

where r(t) = f(t, t) is the short rate. Path dependence enters through two channels: the discount

factor requires integrating the short rate r(s) along the entire stochastic path of the forward curve from

t to T , and the payoff h(T, f ; Ξ) depends on the forward curve realized at expiry. This path dependence

prevents closed-form analytical solutions for most derivatives, forcing practitioners to rely on numerical

methods. Since the forward curve is infinite-dimensional, achieving tight estimates of derivative prices

entails evaluating this expectation over a fine partition of the forward curve. Monte Carlo simulation of

thousands ormillions of stochastic forward curve paths becomes increasingly computationally expensive

as this grid grows finer, forcing practitioners to choose between accuracy and computational feasibility.
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Suppose you simulate a contract and obtain a pricewith reasonable accuracy. If the counterparty changes

the terms—even marginally adjusting strike, maturity, or other contract terms—you must resimulate

entirely from scratch. Worse, computing Greeks requires perturbing contract parameters or underlying

rates and drawing fresh paths for each sensitivity, making real-time risk management computationally

expensive.

This paper introduces Finance-Informed Neural Networks (FINNs) to solve this computational bottle-

neck. FINNs circumvent Monte Carlo entirely by exploiting the Feynman-Kac theorem, which estab-

lishes that the stochastic expectation above satisfies a deterministic PDE that can be solved directly via

deep learning. The approach combines two key insights: first, the Feynman-Kac transformation elimi-

nates Monte Carlo simulation by replacing the stochastic pricing problem with a PDE characterization;

second, neural networks trained via automatic differentiation solve high-dimensional PDEs efficiently,

avoiding the curse of dimensionality that plagues traditional finite difference methods. Once trained,

FINNsprice derivatives inmicroseconds regardless of state space dimension, delivering speedups ofmany

orders of magnitude over Monte Carlo. Critically, the major Greeks—theta and curve deltas—come for

free, since they appear directly in the PDE being minimized during training. Other Greeks require only

negligible additional computation via automatic differentiation. A further practical advantage is the ap-

proach’s flexibility: regardless of the specific derivative contract—caplets, swaptions, callable bonds, or

exotic path-dependent structures—the core PDE governing prices remains identical. Pricing different

instruments requires only adjusting the contract features in the state variable and modifying the bound-

ary condition to reflect the appropriate payoff function, without altering the fundamental PDE struc-

ture.

The methodology builds on physics-informed neural networks (PINNs) pioneered by Raissi, Perdikaris,

and Karniadakis (2019), which embed governing differential equations directly into the loss function.

Neural networks are universal function approximators whose evaluation cost scales gracefully with di-

mension. Modern deep learning frameworks compute exact derivatives via automatic differentiation,

enabling direct evaluation of PDE residuals at any point in the state space. The neural network param-
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eterizes the pricing functional, and training minimizes PDE violations alongside boundary condition

penalties—critically, enforced without any forward simulation by evaluating terminal payoffs directly on

the cross-section of historical forward curves rather than simulating curves to maturity.

I demonstrate this methodology by pricing interest rate caplets—call options on future LIBOR rates

and fundamental building blocks for caps and swaptions. Using daily U.S. Treasury forward curve data

from Gürkaynak, Sack, andWright (2007), I estimate volatility via PCA, derive the caplet pricing PDE,

and train neural networks across eight discretization levels ranging from K = 10 to K = 150 tenor

points. The training procedure exploits the analytical zero-strike caplet solution as an additional anchor,

disciplining the pricing functional with exact solutions where available. All results use local volatility

(scaling with the square root of forward rate levels) to capture the empirical phenomenon that interest

rate volatility scales with rate levels. Validated against a test set of 1,000 randomly sampled contracts, the

trained FINNs achieve pricing accuracy within 0.04¢ to 0.07¢ compared to Monte Carlo benchmarks

(per dollar of contract value),while requiring only consumer-grade hardware (8GBGPU) and evaluating

in a few microseconds once trained. The computational advantage is dramatic: as I grow the state space

(discretization of the forward curve) from 10 to 150 nodes, FINNs price caplets 300,000 to 4,500,000

times faster thanMonte Carlo simulation.

89



Chapter 3. Deep Learning the Term Structure for Derivatives Pricing

3.2 Literature Review

This paper sits at the intersectionof term structuremodeling, computationalPDEmethods, andmachine

learning for derivatives pricing.

Early short-rate models (Vasicek 1977; Cox, Ingersoll, Ross, et al. 1985; Hull and White 1990) specify

dynamics for the instantaneous rate and derive the entire term structure from this single state variable,

offering analytical tractability at the cost of restricting all interest ratemovements to a single factor. For in-

terest rate derivatives, practitioners frequently use Black (1976) formula for caps and floors, which applies

the Black-Scholes framework directly to forward rates. However, the Blackmodel prices each caplet inde-

pendently without specifying how forward rates co-evolve, potentially admitting arbitrage when pricing

portfolios of caplets at different maturities.

Heath, Jarrow, and Morton (1992) revolutionized the field by modeling the entire forward curve simul-

taneously, yielding an arbitrage-free framework that nests earlier short-rate models as special cases. The

cost of this generality is computational: the forward curve is infinite-dimensional, requiringdiscretization

for numerical implementation. Subsequent work has taken two approaches to manage this complexity.

One strand imposes structure to achieve dimensionality reduction, either throughMarkovian restrictions

(Cheyette 2001) or through discretely-compounded forward rate specifications like the LIBOR market

model (Brace, Ga̧tarek, and Musiela 1997), which prices caps and swaptions directly in terms of observ-

able market rates. My approach takes a different path, avoiding dimensionality reduction entirely—the

neural network accommodates the full discretized forward curve without requiringMarkovian structure

or parametric restrictions. The Musiela parameterization (Musiela and Rutkowski 2005) reformulates

HJM dynamics in terms of time-to-maturity rather than calendar time, a change of variables essential for

PDE-based pricing methods.

PDEs have been understood to be at the heart of option pricing at least since the seminal work of Black

and Scholes (1973) andMerton et al. (1971). Recent work applies neural networks to solve pricing PDEs

in continuous-time models. Gopalakrishna (2021) and A. Zhang (2022) demonstrate neural network
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solutions for PDEs arising in macro-finance models, while a parallel literature (Chen et al. 2023; Yuana

2024; Cao, Chen, and Hull 2020; Cao, Chen, Hull, and Poulos 2021; Cao, Chen, Farghadani, et al.

2023) focuses on learning optimal hedging strategies and/or derivatives prices.

A distinct methodological strand uses neural networks to solve PDEs without discretizing the state space.

Raissi, Perdikaris, and Karniadakis (2019) pioneered physics-informed neural networks (PINNs), which

embed the governing PDE directly in the loss function via automatic differentiation, eliminating the

need for spatial grids. This mesh-free approach scales naturally to high dimensions. Han, Jentzen, and

E (2018) develop the deep BSDE method for backward stochastic differential equations, demonstrating

solutions to parabolic PDEs in hundreds of dimensions, while Sirignano and Spiliopoulos (2018)propose

the Deep Galerkin Method as an alternative variational approach. For financial applications specifically,

Beck et al. (2021) extend these methods to Kolmogorov PDEs, solving backward in time from terminal

conditions.
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3.3 Heath-Jarrow-MortonModel Refresher

What follows is a non-rigorous refresher of theHeath-Jarrow-Morton (Heath, Jarrow, andMorton 1992)

paper.

Consider a continuous trading interval [0, T ] for a fixed T > 0 and probability space (Ω,F , Q) where

Ω is the state space, F is the σ-algebra representing measurable events, and Q is a probability measure.

Augmented, right-continuous complete filtration {Ft : t ∈ [0, T ]} generated byN ≥ 1 independent

Brownianmotions {Wn(t) : t ∈ [0, T ]}Nn=1 initialized at zero. LetE[·] denote expectations with respect

to the probability measureQ.

There exists a continuum of default-free pure discount bonds trading with differing maturities T ∈

[0, T ]. The price at time t of a bond maturing at T for all T ∈ [0, T ] and t ∈ [0, T ] is denoted P (t, T ).

Face values are normalized to 1: P (T, T ) = 1 for all T ∈ [0, T ]. Additionally, P (t, T ) > 0 and

∂ logP (t, T )/∂T exists for all T ∈ [0, T ] and t ∈ [0, T ].1

Define the instantaneous forward rate at time t for date T > t as:

f(t, T ) = −∂ logP (t, T )
∂T

for all T ∈ [0, T ], t ∈ [0, T ]. (3.2)

Bond prices can be expressed in terms of forward rates:

P (t, T ) = exp
(
−
∫ T

t

f(t, s)ds
)

for all T ∈ [0, T ], t ∈ [0, T ]. (3.3)

The instantaneous forward rate is termed the spot rate and is given by

r(t) = f(t, t) for all t ∈ [0, T ]. (3.4)
1Normalize payoffs, no arbitrage, and forward rates are well-defined, respectively.
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HJM starts with forward rate dynamics given as:

df(t, T ) = µ(t, T )dt+ σ(t, T ) · dW (t). (3.5)

Above, σ(t, T ) = (σn(t, T ))
N
n=1 andW (t) = (Wn(t))

N
n=1 are vectors in Rn representing the n ≥ 1

volatility processes. Both µ and σ are assumed to be measurable, adapted, and integrable over [0, T ]

almost everywhere with respect toQ.

∫ T

0

|µ(t, T )| dt < +∞∫ T

0

σ2
n(t, T )dt < +∞ for i = n, . . . , N.

Given a deterministic initial forward curve f(0, T ), the dynamics above uniquely determine the stochas-

tic fluctuation of the entire forward curve according to

f(t, T ) = f(0, T ) +

∫ t

0

µ(s, T )ds+
N∑
n=1

∫ t

0

σn(s, T )dWn(s) (3.6)

for all 0 ≤ t ≤ T .

Applying Itô’s Lemma to equation (3.3) and (3.5) and applying the no-arbitrage restriction yields the

familiar HJM result:2

µ(t, T ) = σ(t, T ) ·
∫ T

t

σ(t, s)ds (3.7)

This result implies that the dynamics of the entire forward curve are parameterized only by choice of σi

functions. The next section will discuss historical methods for doing so, as well as common methods

for using this model for contingent claims valuation. The following section will discuss an improved

contingent claims valuation approach, blending deep learning with the Feynman-Kac theorem.
2For a detailed derivation, see the original paper.

93



Chapter 3. Deep Learning the Term Structure for Derivatives Pricing

3.3.1 Musiela Parameterization

In computational applications, a change of variables termed the ‘Musiela Parameterization’ is under-

taken: from (t, T ) to (t, τ )where τ = T−t is termed the tenor and represents time-to-maturity (Musiela

and Rutkowski 2005). The model dynamics then become:

df(t, τ ) = µ(t, τ )dt+ σ(t, τ ) · dWt (3.8)

dτ = −dt (3.9)

and the state space is t ∈ [0, T ], τ ∈ [0, T − t].

The no-arbitrage drift process is also amended:

µ(t, τ ) =
∂

∂τ
f(t, τ ) + σ(t, τ ) ·

∫ τ

0

σ(t, τs)ds (3.10)

TheMusiela form will be used in what follows for the rest of the paper.
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3.4 Standard Procedure for Computing the HJMModel

The standard approach to implementing theHJMmodel involves three computationally straightforward

steps: obtaining forward curve data, estimating the volatility structure via principal components analysis,

and computing the no-arbitrage drift via numerical integration. All three steps are relatively inexpensive

and can be performed once as preprocessing. I follow this standard procedure in my implementation,

using widely available data and conventional estimation techniques.

The computational expense in HJMmodeling does not arise from these preprocessing steps. Rather, it

emerges when pricing path-dependent interest rate derivatives, which traditionally requiresMonteCarlo

simulation of thousands ormillions of forward curve paths. ThisMonteCarlo bottleneck is the problem

I address in subsequent sections by first casting the stochastic simulation exercise into a deterministic PDE

and second by using FINNs to solve the pricing PDE directly.

3.4.1 Data and Forward Curve Construction

This paper uses daily instantaneous forward rate data constructed by Gürkaynak, Sack, andWright 2007

fromU.S. Treasury securities. The dataset provides fitted Svensson parameters (β0, β1, β2, β3, τ1, τ2) es-

timated daily from all traded Treasury securities using the parametric yield curve methodology of Svens-

son 1994. I utilize data from January 1, 2001 onward, chosen to focus on the modern interest rate envi-

ronment while maintaining a sufficiently long time series for estimating volatility dynamics.

The Svensson model specifies the instantaneous forward rate as a function of tenor:

f(τ) = β0 +

(
β1 + β2

τ

τ1

)
exp
(
− τ

τ1

)
+ β3

τ

τ2
exp
(
− τ

τ2

)
(3.11)

RawSvenssonparameter estimates occasionally exhibit extreme values due tomarket stress or thin trading

in certain maturities. To ensure numerical stability, I filter observations using quantile-based outlier de-

tection: for eachparameter, I retain only observations between the 5th and95thpercentiles of its empirical
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distribution. This removes approximately 10% of observations while preserving the full range of typical

market conditions. For implementation, I evaluate the Svensson formula at a grid of equally spaced inter-

vals over the interval [0, 5] years—appropriate for pricing short-maturity caplets. A final filtering step re-

moves any dates where forward rates are negative or numerically close to zero (below ϵ = 0.005 = 0.5%)

at any tenor.

3.4.2 Volatility Estimation

Practitioners discretize the tenor dimension into a finite grid {τk}Kk=1 and estimate the covariancematrix

of forward rate changes across these tenors. Because this covariance is computed by pooling data across

time, the time dimension t is integrated out, yielding time-invariant volatility estimates. I use the Federal

Reserve’s published forward rates at annual tenor intervals for τ = 1, . . . , 30 years for this volatility

estimation.

I compute the sample covariance matrix of daily forward rate changes, scaled to annual units by multi-

plying by 252 trading days:

Cov[∆f ] = 252 · E[(∆f)(∆f)′] (3.12)

where∆f denotes the vector of daily changes in forward rates across the 30 tenor points.

Principal components analysis (PCA) is then applied to this covariance matrix to extract the dominant

factors driving term structure movements. Empirically, the first three principal components typically

capture a large majority of the variation in forward rate changes, corresponding to the well-known level,

slope, and curvature factors. Applying eigenvalue decomposition to the covariance matrix, I extract

the three eigenvectors corresponding to the three largest eigenvalues. To obtain volatility magnitudes,

I scale each eigenvector by the square root of its corresponding eigenvalue, yielding adjusted volatility

vectors:

σ̃n(τk) =
√
λn · vn(τk) (3.13)

where λn is the n-th largest eigenvalue and vn is the corresponding eigenvector, evaluated at the discrete
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grid points τk = k for k = 1, . . . , 30.

To obtain volatility functions σn(τ) defined over the continuumof tenors, I fit smoothChebyshev poly-

nomials through these discrete principal component loadings. Specifically, for each factor n = 1, 2, 3, I

fit a Chebyshev polynomial of degree 3:

σn(τ) =
3∑
j=0

cn,jTj

(
2τ

τmax
− 1

)
(3.14)

where Tj is the j-th Chebyshev polynomial of the first kind and cn,j are fitted coefficients.

3.4.3 Computing the No-Arbitrage Drift

A key advantage of the Svensson parameterization is that it provides an analytical expression for the

derivative of the forward curve with respect to tenor:

df
dτ

=

(
−β1
τ1

+
β2
τ1

(
1− τ

τ1

))
exp
(
− τ

τ1

)
+
β3
τ2

(
1− τ

τ2

)
exp
(
− τ

τ2

)
(3.15)

With the volatility structure σn(τ) and forward curve derivative ∂f/∂τ specified, the no-arbitrage drift

can be computed from theMusiela condition (equation 101):

µ(t, τ ) =
∂

∂τ
f(t, τ ) + σ(t, τ ) ·

∫ τ

0

σ(t, s)ds (3.16)

The second term requires evaluating the integral
∫ τ
0
σ(t, s)ds for each volatility factor. Since the volatility

functions are represented as Chebyshev polynomials, this integral is computed numerically using stan-

dard quadrature methods such as the trapezoidal rule or Simpson’s rule over the discretized tenor grid

{τk}Kk=1.

This numerical integration step is computationally inexpensive and needs to be performed only once per

forward curve evaluation. Crucially, the drift computation does not require stochastic simulation—it

is a deterministic calculation given the current state of the forward curve f(t, τ ) and the pre-estimated
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volatility structure σn(τ).

These fitted volatility functions σn(τ) and the associated drift will be held fixed during neural network

training, entering the loss function through the drift term and the second-order derivative terms in the

PDE.

3.4.4 Local Volatility Specification

The volatility estimation procedure described above yields time-invariant volatility functions σn(τ) that

depend only on tenor. However, I adopt a local volatility specification that allows volatility to depend

on the current level of forward rates. Local volatility models are widely used in interest rate derivatives

markets to capture the empirical phenomenon that interest rate volatility tends to scale with the level of

rates—a feature not present in constant-volatility specifications. All results presented in this paper use

this local volatility structure.

The Finance-Informed Neural Network approach handles local volatility with minimal additional com-

plexity. State-dependent volatility enters themodel simply through automatic differentiationwhen com-

puting the PDE residual, requiring no changes to the neural network architecture or training procedure.

This flexibility stands in stark contrast to Monte Carlo methods, where local volatility substantially in-

creases computational burden: each simulated path must now track both the forward curve evolution

and the state-dependent volatility at each time step, with the volatility function evaluated thousands of

times per simulation.

For the FINN implementation, the only modification required is in the data preprocessing step. I com-

pute the covariance matrix using proportional changes rather than absolute changes:

Cov
[
∆f√
f

]
= 252 · E

[(
∆f√
f

)(
∆f√
f

)′]
(3.17)

where the division by
√
f scales each forward rate change by the square root of the current forward rate

level. After computing the scaled covariance matrix, I apply the same PCA decomposition and Cheby-
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shev polynomial fitting described in the previous subsection. The resulting volatility functions σn(τ)

now represent proportional volatilities.

During neural network training, these proportional volatilities are multiplied by min{
√
f(t, τ ),M}

whereM = 0.4 = 40% is the parameter suggested in the seminal continuous-time textbook fromShreve

(2004). The capM prevents numerical instability when forward rates become extremely large—limiting

the volatility scaling to reasonable levels even in high-rate environments. This choice ensures that the

volatility scaling remains well-behaved across the full range of observed forward rate environments. With

local volatility, the HJM dynamics under the Musiela parameterization become:

df(t, τ ) = µ(t, τ )dt+ σ(t, τ, f) · dWt (3.18)

µ(t, τ ) =
∂

∂τ
f(t, τ ) + σ(t, τ, f) ·

∫ τ

0

σ(t, s, f)ds (3.19)

where the state-dependent volatility function is defined as:

σ(t, τ, f) = σ̃(τ) ·min{
√
f(t, τ ),M} (3.20)

with σ̃(τ) denoting the PCA-derived proportional volatility functions computed during preprocessing.

Importantly, the PCA-derived volatility values σ̃n(τ) are computed only once during the preprocessing

stage and stored as fixed parameters. During neural network training, multiplying these stored values by

min{
√
f(t, τ ),M} to produce the state-dependent volatility is computationally negligible.

With all preprocessing complete—forward curve data obtained, volatility structure estimated, and drift

computation specified—the standard HJM implementation would proceed to Monte Carlo simulation

for pricing path-dependent derivatives. My method avoids this computational bottleneck entirely. To

explain how, I require a brief mathematical digression to the Feynman-Kac theorem, which transforms

the stochastic pricing problem into a deterministic partial differential equation. Once this theoretical

foundation is established, I will present the specific application to caplet pricing and describe the neural

network algorithm that solves the PDE.
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3.5 Feynman-Kac Formula in the HJM Framework

The Feynman-Kac theorem provides the mathematical foundation for my approach to pricing interest

rate derivatives. This classical result from stochastic analysis establishes an equivalence between stochastic

expectations and deterministic partial differential equations. The key insight is that instead of computing

the expected discounted payoff throughMonte Carlo simulation—which requires generating thousands

or millions of random paths—I can solve a PDE that characterizes the same pricing functional. This

section presents the multidimensional Feynman-Kac theorem and shows how to apply it to the HJM

framework.

Recall the fundamental pricing formula under risk-neutral valuation. For a derivative security with con-

tract features Ξ and payoff function h(t, f ; Ξ) depending on the forward curve, the time-t price is given

by:

V (t, τ, f ; Ξ) = E
[
exp
(
−
∫ t+τ

t

r(s)ds
)
h(t+ τ, f ; Ξ)

∣∣∣Ft

]
(3.21)

where τ is the time-to-maturity, r(s) = f(s, 0) is the short rate at time s, h characterizes the cash flow at

maturity, and Ft is the information available at time t. This expectation is taken under the risk-neutral

measure, reflecting the principle that the derivative price equals the present value of expected future pay-

offs when discounted at the risk-free rate.

Computing this expectation directly viaMonte Carlo requires simulating the stochastic evolution of the

entire forward curve from time t to time t+ τ along many paths, then averaging the discounted payoffs.

The Feynman-Kac theorem transforms this stochastic problem into a deterministic PDE, avoiding the

need for random simulation entirely.

Theorem 3.5.1 (Multidimensional Discounted Feynman-Kac). Consider a K-dimensional state vector

X(t) ∈ RK evolving according to the stochastic differential equation:

dX(t) = µ(t,X(t))dt+ σ(t,X(t))dWt (3.22)
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where µ(t,X(t)) ∈ RK is the drift vector, σ(t,X(t)) ∈ RK×N is the diffusion matrix, andWt ∈ RN is

anN -dimensional Brownian motion. Let r(t,X(t)) denote a discount rate that may depend on the state.

Define the pricing functional:

V (t, x) = Et,x
[
e−

∫ T
t r(s,X(s))dsh(T,X(T ))

]
(3.23)

whereEt,x[·] denotes the conditional expectation givenX(t) = x, and h(T,X(T )) is the terminal payoff.

Then under general regularity conditions V satisfies the partial differential equation:

∂V

∂t
+ µ′DxV +

1

2

N∑
n=1

σ′
nD

2
xV σn − rV = 0 (3.24)

subject to the terminal condition V (T, x) = h(T, x), where DxV is the gradient vector and D2
xV is the

Hessian matrix of V with respect to x, and σn denotes the n-th column of the diffusion matrix.

The PDE (3.24) has an intuitive structure. The first term ∂V /∂t captures the time evolution of the

pricing functional. The second term µ′DxV represents the expected change in value due to the drift of

the state variable. The third term 1
2

∑N
n=1 σ

′
nD

2
xV σn captures the effect of volatility through second-

order (convexity) terms. Finally, the term−rV discounts the value at the instantaneous rate.

To apply the Feynman-Kac theorem to theHJM framework, Imust first discretize the forward curve over

the tenor dimension. The forward curve f(t, τ ) is an infinite-dimensional object—a function mapping

each tenor τ ∈ [0, T ] to a forward rate. For computational purposes, I discretize this continuum by

evaluating the forward curve at a finite grid of tenor points {τk}Kk=1. Define the discretized forward rates

as:

fk(t) = f(t, τk) for k = 1, . . . , K (3.25)

and collect them into a state vector f(t) = (f1(t), . . . , fK(t))
′ ∈ RK . This vector represents the entire

forward curve at time t through its values at theK discrete tenor points.
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Under the Musiela parameterization presented earlier, the discretized forward curve evolves according

to:

df(t) = µ(t, f)dt+
N∑
n=1

σn(t, f)dWn(t) (3.26)

where the drift vector and volatility factors are defined as:

µ(t, f) = (µ(t, τ1, f), . . . , µ(t, τK , f))
′ ∈ RK (3.27)

σn(t, f) = (σn(t, τ1, f), . . . , σn(t, τK , f))
′ ∈ RK for n = 1, . . . , N (3.28)

and {Wn(t)}Nn=1 are theN independent Brownian motions driving term structure dynamics. This dis-

cretized system fits precisely into the framework of the multidimensional Feynman-Kac theorem with

X(t) = f(t) and dimensionK .

The no-arbitrage drift µ(t, τk, f) at each tenor point is computed from the Musiela condition as de-

scribed in the previous section:

µ(t, τk, f) =
∂

∂τ
f(t, τk) + σ(t, τk, f) ·

∫ τk

0

σ(t, s, f)ds (3.29)

where for the local volatility specification, σ(t, τk, f) = σ̃(τk) ·min{
√
fk(t),M}. The discount rate in

the Feynman-Kac theorem is the short rate r(t) = f(t, 0).

ApplyingTheorem 1directly yields thepricingPDEfor interest rate derivatives in theHJMframework:

∂V

∂t
+ µ(t, f)′DfV +

1

2

N∑
n=1

σn(t, f)
′D2

fV σn(t, f)− r(t)V = 0 (3.30)

subject to the terminal boundary condition:

V (t+ τ, f ; Ξ) = h(f ; Ξ) (3.31)

whereV (t, f ; Ξ) is the time-t value of the derivative when the forward curve is f , and the gradient vector
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and Hessian matrix are defined as:

DfV =

(
∂V

∂f1
, . . . ,

∂V

∂fK

)′

∈ RK (3.32)

D2
fV =

(
∂2V

∂fk∂fℓ

)K
k,ℓ=1

∈ RK×K (3.33)

A crucial feature of this formulation is that the PDE (3.30) does not depend on the specific contract fea-

tures Ξ. The contract-specific information enters only through the terminal boundary condition (3.31),

which specifies the payoff function h(f ; Ξ). This separation has important practical implications: once

I have trained a neural network to solve the PDE for one contract type, adapting to a different contract

requires only changing the boundary condition in the loss function. The core PDE structure—the drift

term, volatility terms, and discounting—remains unchanged across all interest rate derivatives priced un-

der the same HJMmodel. This modularity makes the FINN approach highly flexible for pricing a wide

range of instruments.
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3.6 Application: Caplet Pricing

Todemonstrate theFinance-InformedNeuralNetwork approach, I apply it topricing interest rate caplets.

Caplets provide insurance against rising interest rates and are fundamental building blocks formore com-

plex instruments such as interest rate caps (portfolios of caplets) and swaptions. The caplet pricing prob-

lem is particularly well-suited for demonstrating the FINN methodology because it is path-dependent

in multiple ways: the payoff depends on the future LIBOR rate, which itself depends on the future for-

ward curve, and the entire cash flow must be discounted along the stochastic path of short rates. This

path dependence makes Monte Carlo simulation computationally expensive, yet the payoff structure is

straightforward enough to allow clear interpretation of results.

A caplet is a call option on a future LIBOR rate. To define the contract precisely, I first introduce the

LIBOR rate and then specify the caplet payoff.

The LIBOR (London InterbankOfferedRate) is an annualized interest rate for borrowing between time

τ1 and time τ2.3 At time t, the forward LIBOR rate starting at τ1 and ending at τ2 is defined implicitly

through the relationship between bond prices:

L(t, τ1, τ2) =
1

δ

(
P (t, τ1)

P (t, τ2)
− 1

)
(3.34)

where δ = τ2 − τ1 is the accrual period (typically 3 months or 6 months for LIBOR), and P (t, τ ) is the

time-t price of a zero-coupon bondmaturing at time t+ τ with face value normalized to one. Under the

HJM framework, bond prices are determined by integrating the forward curve:

P (t, τ ) = exp
(
−
∫ τ

0

f(t, s)ds
)

(3.35)

Thus the LIBOR rate depends on the entire forward curve from 0 to τ2 through the bond price ratio,
3While LIBOR has been phased out in recent years in favor of risk-free rates such as SOFR, the caplet pricing problem

remains relevant for understanding interest rate derivatives more generally.
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since both P (t, τ1) and P (t, τ2) require integrating forward rates from zero to their respective maturi-

ties.

A caplet is a call option on the LIBOR rate L(t, τ1, τ2) with strike price LE . The holder of the caplet

receives a payoff at time t+ τ2 (the end of the accrual period) equal to:

Payoff at time t+ τ2 = δ ·max{L(t+ τ1, τ1, τ2)− LE, 0} (3.36)

where the LIBOR rate is fixed at the start of the accrual period (t + τ1) and the payoff is received at the

end (t + τ2). The factor δ converts the annualized rate difference into a dollar amount over the accrual

period.

For computational convenience, I adopt the market convention of valuing the caplet at the settlement

date t + τ1 rather than the payment date t + τ2. Discounting the payoff back one period yields the

time-(t+ τ1) value:

V (t+ τ1, 0, f) = δP (t+ τ1, δ)max{L(t+ τ1, 0, δ)− LE, 0} (3.37)

where I have simplified notation by setting τ1 = 0 relative to the valuation date and τ2 = δ. The contract

features are summarized asΞ = (τ, δ, LE)where τ is the time from today until the settlement date t+τ1,

δ is the accrual period, and LE is the strike price.

3.6.1 Neural Network Strategy

Having derived the pricing PDE (3.30), the next challenge is to solve it numerically. In principle, the PDE

requires computing the pricing functional V (t, f ; Ξ) and its derivatives—∂V /∂t, the gradient DfV ,

and theHessianD2
fV—atmany points in the high-dimensional state space (t, f) ∈ R×RK . However,

a key simplification arises from the Musiela parameterization: since the contract features Ξ already in-

clude the time-to-maturity τ , and the pricing problem can be solved backward from the settlement date,

I can eliminate explicit dependence on calendar time t. The pricing functional becomesV (τ, f ; Ξ)where
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τ represents the remaining time until settlement. Under the Musiela parameterization, since τ = T − t

where T is the fixed settlement date, the chain rule yields ∂V
∂t

= −∂V
∂τ
. This transforms the time deriva-

tive into a derivative with respect to time-to-maturity, allowing the neural network to be parameterized

directly as a function of (τ, f,Ξ) rather than requiring separate tracking of calendar time.

Traditional finite difference methods for solving the resulting PDE become prohibitively expensive in

high dimensions due to the curse of dimensionality: discretizing each dimension of the forward curve

on a grid leads to exponential growth in the number of grid points. Neural networks offer a solution. A

neural network is a smooth, differentiable function that can approximate complex nonlinear mappings.

I parameterize the pricing function as a neural network VΘ(f ; Ξ) where Θ represents the collection of

all weights and biases in the network. The network takes as inputs the discretized forward curve f =

(f1, . . . , fK) and contract features Ξ (which include time-to-maturity τ ), and outputs a scalar price

estimate.

A key computational advantage lies in automatic differentiation. Modern deep learning frameworks

such as JAX, PyTorch, and TensorFlow implement automatic differentiation systems that can compute

derivatives of any function constructed through their operations—including arbitrarily complex neural

networks. Critically, these derivatives are computed exactly (up to floating-point precision), not through

finite difference approximations. When I evaluate the neural network VΘ(f ; Ξ), the automatic differen-

tiation system tracks all operations and can immediately compute the first- and second-order derivatives

needed for evaluating the PDE governing the pricing functional. These derivative computations are ef-

ficient and scale easily with dimension K , unlike grid-based finite difference methods. An additional

practical benefit is that the Greeks—sensitivities of the option price to market parameters—come essen-

tially for free. Since the pricing PDE itself contains ∂V /∂τ (theta, time decay) andDfV (the gradient

yielding curve deltas, sensitivities to each forward rate fk), these quantities are computed automatically

when evaluating the PDE residual during training. Thus, evaluating pricing errors simultaneously deliv-

ers the Greeks critical for risk management and hedging strategies at zero marginal cost.

With automatic differentiation providing all necessary derivatives, I can directly evaluate how well the
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neural network satisfies the PDE at any point (τ, f). The PDE residual at a point is:

−∂VΘ
∂τ

+ µ(t, f)′DfVΘ +
1

2

N∑
n=1

σn(t, f)
′D2

fVΘ σn(t, f)− r(t)VΘ (3.38)

3.6.2 FINNArchitecture and Training

For the remainder of this section, I adopt the notation X to denote the inputs to the neural network

and Y to denote the outputs. The inputs are X = (f1, . . . , fK , S,Ξ) ∈ RK+9 comprising the dis-

cretized forward curve, Svensson parameters S = (β0, β1, β2, β3, τ1, τ2) ∈ R6, and contract features

Ξ = (τ, δ, LE) ∈ R3 where τ is the time until the start of the accrual period, δ is the accrual length,

and LE is the strike price. Note that τ2 = τ + δ is redundant and not included as a separate input. The

output is the scalar caplet priceY = V (τ, f ; Ξ).

To improve training stability and convergence, I normalize inputs within the network architecture itself

—crucially, as the first layer before any nonlinear transformations. This normalization is implemented as

a differentiable operationwithin the computational graph, meaning automatic differentiation seamlessly

handles all derivative computations through the normalization without requiring manual adjustment.

The time-related contract features τ1 and δ are normalized by dividing by the maximummaturity τmax in

the data. The Svensson parameters are transformed to z-scores:

β̃i =
βi − µβi
σβi

(3.39)

where µβi and σβi are the empirical mean and standard deviation of parameter βi computed across the

historical dataset. The forward rates themselves are left unnormalized, as their scale is economicallymean-

ingful and directly enters the pricing formula.

The FINN architecture consists of three hidden layers, each with 500 neurons. I apply the sigmoid linear

unit (SiLU) activation function silu(x) = x × σ(x) where σ(x) = 1
1+exp(−x) is the sigmoid function

107



Chapter 3. Deep Learning the Term Structure for Derivatives Pricing

to the hidden layers, which provides smooth, differentiable nonlinearity necessary for backpropagation

through the financial equilibrium conditions. Since prices must be nonnegative, I apply the softplus

activation function softplus(x) = log(1 + ex) to the output layer, which smoothly enforces the non-

negativity constraint while remaining differentiable everywhere.

To accelerate training, I precompute several quantities that remain constant across training iterations.

First, I enumerate all admissible tenor-accrual pairs (τ, δ), storing these as indices for rapid sampling dur-

ing batch generation. Second, since all forward rates and volatility evaluations occur on the fixed tenor

grid {τk}Kk=1, I precompute the trapezoidal integration matrix C ∈ RK×K where element Cij gives

the weight for integrating from grid point j to grid point i. This vectorizes all integral computations

—including bond price calculations P (t, τ ) = exp(−
∫ τ
0
f(t, s)ds) and drift integrals—into matrix-

vector products. Third, I precompute and store the Chebyshev polynomial coefficients for the volatility

functions σn(τ) from the PCA decomposition. For the constant volatility specification, I additionally

precompute the volatility integral
∫ τ
0
σ(t, s)ds needed in the drift term, storing these as vectors that can

be directly used in the loss function evaluation. These precomputations transform computationally ex-

pensive operations into simple lookups and matrix multiplications, substantially reducing per-iteration

training time.

Unlike traditional supervised learning where training data comes from a pre-existing dataset, the FINN

approach generates its own trainingdata by sampling from thehistorical forward curve distribution. Each

training batch is constructed by randomly sampling:

- A tenor-accrual pair with τ ∈ [0, 5] and δ ∈ [1/3, 3/4] (covering typical caplet accrual periods

and maturities)

- A forward curve f and its corresponding Svensson parameters from the filtered historical dataset

- A strike price LE from a Chebyshev grid over [0, 0.07] (covering the range of observed forward

rates)
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This sampling strategy ensures the network trains on a diverse set of market conditions, contract speci-

fications, and moneyness levels. The training data is regenerated every epoch, preventing overfitting to

any particular set of forward curves and encouraging the network to learn the underlying PDE structure

rather than memorizing specific curve realizations.

To evaluate the boundary condition, for any historically observed forward curve f sampled from the data,

I simply set the time-to-maturity τ = 0 in the contract features and evaluate what the payoff would be if

that curve represented the state at expiry. That is, I treat each sampled historical curve as if it were the for-

ward curve at the settlement date and compute the corresponding caplet payoff. The loss function then

penalizes deviations between the network’s prediction VΘ(τ = 0, f ; Ξ) and this analytically computed

payoff. This approach leverages the rich historical variation in forward curve shapes to train the bound-

ary condition, while the PDE loss teaches the network how values at earlier times τ > 0 relate to these

terminal payoffs through the no-arbitrage dynamics. Importantly, this strategy completely avoids the

computational expense of path simulation—all training occurs on the cross-section of historical curves,

not their time-series evolution.

To further enrich the disciplining of the pricing functional, I exploit the special case of zero-strike caplets,

which admit a closed-form analytical expression that holds at all times, not just at maturity. For a caplet

with strike LE = 0, there is no optionality—the payoff is deterministically equal to the LIBOR rate.

Standard no-arbitrage arguments yield the closed-form expression:

V (τ1, f ;LE = 0) = P (τ1)−P (τ1+ δ) = exp
(
−
∫ τ1

0

f(s)ds
)
− exp

(
−
∫ τ1+δ

0

f(s)ds
)

(3.40)

Crucially, this closed-form expression holds for any τ1 ≥ 0, not just at the boundary. The absence

of optionality means the pricing PDE reduces to a deterministic bond pricing formula, which can be

evaluated exactly from the current forward curve. During training, I augment the loss function by rela-

beling a fraction of the sampled data points to have strike LE = 0 at various times-to-maturity τ1 and

penalizing deviations between the network’s zero-strike prediction and this analytical formula. This pro-

109



Chapter 3. Deep Learning the Term Structure for Derivatives Pricing

vides the network with exact supervisory signals across the full domain—both in the time dimension and

across the space of forward curve shapes—serving as a powerful regularization that anchors the pricing

functional to known analytical values. The zero-strike case effectively provides thousands of additional

training points where the true solution is known exactly, complementing the PDE residual minimization

and boundary condition training for positive strikes, thereby improving overall accuracy and accelerating

convergence.

Thenetwork is trainedusing theAdamoptimizer (Kingma andBa 2014)withweight decay regularization

(λ = 10−5) in a three-regime curriculum learning schedule. Each regime uses progressively smaller

learning rates to refine the solution:

- Regime 1: 15,000 epochs with learning rate 10−4, batch size 100, 10 batches per epoch

- Regime 2: 5,000 epochs with learning rate 10−5, batch size 100, 10 batches per epoch

- Regime 3: 2,500 epochs with learning rate 10−6, batch size 500, 2 batches per epoch

This curriculum learning approach starts with larger learning rates to explore the solution space broadly,

then progressively refines with smaller learning rates and larger batch sizes. Crucially, the training data is

redrawn after each epoch, ensuring that the network learns from fresh forward curve realizations rather

than overfitting to a single sample.

A key computational challenge in evaluating the PDE residual is computing the second-order term,

which involves the Hessian matrixD2
fV ∈ RK×K . I employ a directional derivative trick to avoid mate-

rializing the full Hessian. Using the chain rule identity, the quadratic form can be rewritten as:

σ′
nD

2
fV σn = Df (DfV · σn) · σn (3.41)

The algorithm proceeds as follows: first compute the gradientDfV once. Then for each factor n, form

the scalar directional derivative s = DfV ·σn, compute its gradientDfs (which gives the second deriva-
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tive in the σn direction), and dot with σn again to obtain σ′
nD

2
fV σn. This approach reduces memory

and computational requirements, making it feasible to evaluate the PDE residual efficiently even for large

discretizationsK .

Combining these elements, the complete training objective becomes clear. If VΘ were the true solution,

this residual would equal zero everywhere. I train the neural network to minimize the squared PDE

residual across a collection of randomly sampled points, combined with penalties for violating both the

terminal boundary condition and the zero-strike analytical formula. The Finance-Informed loss function

comprises three components, averaged over number of contractsNbatch:

LΘ =
1

Nbatch

Nbatch∑
n=1

((
−∂VΘ
∂τ1

+ µ′DfVΘ +
1

2

N∑
n=1

σ′
nD

2
fVΘσn − rVΘ

)2

+ (VΘ(τ1 = 0, f ; Ξ)− δP (δ)max{L(0, δ)− LE, 0})2

+ (VΘ(τ1, f ;LE = 0)− (P (τ1)− P (τ1 + δ)))2
)

(3.42)

where the first term penalizes violations of the pricing PDE across sampled interior points (τ1, f) with

τ1 > 0, the second term enforces the terminal boundary condition at settlement (τ1 = 0) for positive-

strike caplets, and the third term anchors the network to the analytical zero-strike formula across all times-

to-maturity. The neural network parameters are updated through standard gradient descent (specifically,

the Adam optimizer) by solving:

Θ∗ = arg min
Θ

LΘ (3.43)

This approach—using automatic differentiation to enforce PDE structure through a loss function—

allows the neural network to learn the pricing functionwithout ever simulatingMonte Carlo paths. The

method scales efficiently to high-dimensional state spaces and handles path-dependent payoffs through

the PDE framework rather than through stochastic simulation.

Table 3.1 reports the hardware used in training the model. Since the FINN generates its own training
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data rather than requiring large pre-existing datasets, the memory bottleneck is the network size rather

than dataset size. This makes consumer-grade hardware with modest GPU memory (8GB VRAM) en-

tirely sufficient, eliminating the need for specialized high-performance computing infrastructure typical

of large-scale machine learning applications.

Table 3.1: Computational Environment

Hardware
Processor 12th Gen Intel i9-12900KF (24) @ 5.100GHz
GPU NVIDIA GeForce RTX 3080 with 8GB of VRAM
RAM 32 GB

To assess how solution accuracy and computational cost scale with the dimension of the discretized

forward curve, I train separate models for eight different discretizations, varying the parameter K ∈

{10, 25, 35, 50, 75, 100, 125, 150}. Remarkably, training time remains approximately one hour across

all discretization levels, demonstrating that the FINNapproach scales gracefullywith dimension—a stark

contrast to traditional finite difference or Monte Carlo methods where computational cost grows expo-

nentially or linearly (respectively) withK . This dimensional robustness arises from the efficiency of au-

tomatic differentiation and the fact that neural network evaluation cost grows only modestly with input

dimension.

3.6.3 Results

I validate the FINN approach by comparing caplet prices to Monte Carlo benchmarks across all eight

discretization levels K ∈ {10, 25, 35, 50, 75, 100, 125, 150}. All results employ the local volatility

specification described above, where volatility scales with the square root of the forward rate level. For

each model, I generate a test set of 1,000 randomly sampled forward curves with varying caplet contract

specifications (strikes, tenors, and accrual periods) and compute both FINN prices and Monte Carlo

prices using 10,000 simulated paths per contract. The Monte Carlo benchmark likewise uses the same

local volatility structure, ensuring a consistent comparison. The results demonstrate that FINNs achieve

comparable pricing accuracy to Monte Carlo simulation while delivering transformative computational
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speedups.

Figure 3.1 quantifies pricing accuracy by plotting the mean absolute error between FINN and Monte

Carlo prices as a function ofK . The error profile does not decrease monotonically withK—instead, it

exhibits a non-monotonic pattern with local minima aroundK = 50 andK = 100, and local peaks

aroundK = 10 andK = 75. All errors remain below 0.001 (0.1 cents on a dollar-denominated con-

tract), with most discretizations achieving errors between 0.0004 and 0.0007. The finest discretizations

(K = 100 andK = 150) both achieve errors around 0.0004, representing approximately 0.04 cents

per dollar of contract value. This non-monotonicity suggests that discretization level interacts with the

training dynamics and neural network capacity in complex ways, rather than finer grids uniformly im-

proving accuracy. For practical purposes, all discretization levels achieve sufficient accuracy for trading

applications, withK = 100 andK = 150 providing the tightest error bounds.

Figure 3.1: Mean Absolute Pricing Error vs. Discretization Level (1000-contract test set). All discretiza-
tions maintain error below 0.001, well within acceptable bounds for trading applications. The finest
discretizations (K = 100 andK = 150) achieve the tightest error bounds around 0.0004. The non-
monotonicity suggests complex interactionsbetweendiscretization level, trainingdynamics, andnetwork
capacity.

An important caveat: Monte Carlo prices themselves are not exact benchmarks but rather approxima-

tions subject to their own sources of error. The Monte Carlo implementation discretizes the forward

curve intoK tenor points (the same discretization used by the FINN), discretizes time into finite steps

(Euler-MaruyamaMarkov chain), and performs repeated numerical integrations to produce drift terms.
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Crucially, when computing the drift term, Monte Carlo must approximate the tenor derivative ∂f/∂τ

using finite differences on the discretized grid, introducing additional discretization error. By contrast,

the FINN leverages the analytical Svensson formula for ∂f/∂τ , avoiding this source of approximation

entirely. Additionally, Monte Carlo prices are subject to sampling error despite using 10,000 paths per

contract. The reported errors therefore reflect the combined approximation errors from both methods

rather than pure FINN error relative to a known analytical solution. In principle, the FINN could be

closer to the true price than the Monte Carlo benchmark, particularly if the neural network captures

the smooth PDE solution more accurately than discrete-time simulation with finite paths. The sub-

0.001 agreement between methods suggests both approaches achieve high accuracy, but neither should

be viewed as providing ground truth.

Figure 3.2: Final Training Loss Across Discretizations. Both PDE residual (solid black) and boundary
condition violation (dashed blue) remain stable across all values ofK , with losses on the order of 10−7 to
10−8. The consistency of lossmagnitudes demonstrates that the FINNtraining procedure scales robustly
with dimension.

Figure 3.2 displays the final PDE loss (solid black line) and boundary condition (BC) loss (dashed blue

line) achieved after training for each discretization level. Both loss components remain remarkably sta-

ble acrossK , with PDE loss fluctuating around 5 × 10−8 and BC loss varying between approximately

5 × 10−8 and 4 × 10−7. The y-axis uses a logarithmic scale, highlighting that final losses are uniformly

small (on the order of 10−7 to 10−8), indicating high-precision satisfaction of both the pricing PDE and

terminal boundary conditions across all discretization levels. The consistency of these loss values con-
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firms that the FINN training procedure scales robustly with dimension—there is no evidence of training

degradation at higherK .

The most compelling advantage of the FINN approach lies in computational speed. Figure 3.3 presents

comprehensive comparisons of FINN and Monte Carlo evaluation times. The top panel of Figure 3.3

shows pricing time in seconds per contract on a linear scale: Monte Carlo time (solid black line) grows

from approximately 1 second atK = 10 to nearly 10 seconds atK = 150, while FINN time (dashed blue

line) remains essentially flat near zero across all discretizations. The middle panel displays the same data

on a log scale, revealing that FINN evaluation takes approximately 10−6 to 10−5 seconds per contract

(a few microseconds), while Monte Carlo ranges from 1 to 10 seconds. The bottom panel shows the

speedup ratio (MC time / FINN time),which grows from approximately 300,000 atK = 10 to over 4.5

million atK = 150—representing a hundred-thousand to multi-million-fold speedup. Table 3.2 provides

the precise timing measurements and mean absolute errors for each discretization level.

This is the headline result: FINNs price caplets roughly 300,000 to 4,500,000 times faster thanMonte Carlo

simulation, with the advantage increasing as dimension grows. Once trained, the neural network evalu-

ates in a fewmicroseconds regardless of the forward curve dimensionality, whileMonte Carlo evaluation

time grows linearlywithK . This dramatic speed advantagemakes FINNs transformative for applications

requiring rapid repricing of large portfolios, such as real-time risk management, high-frequency trading,

or iterative calibration procedures.
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Figure 3.3: Pricing Speed: FINNs vs. Monte Carlo (1000-contract test set). Top panel: Monte Carlo
time (solid) grows linearly from 1 to 10 seconds per contract asK increases, while FINN time (dashed)
remains near zero. Middle panel (log scale): FINN evaluation takes ∼ 10−6 to 10−5 seconds (a few
microseconds),whileMC takes 1 to 10 seconds. Bottom panel: Speedup ratio grows from approximately
300,000× atK = 10 to over 4.5 million× atK = 150, representing a multi-million-fold computational
advantage that increases with dimension.

116



Chapter 3. Deep Learning the Term Structure for Derivatives Pricing

K MCTime FINNTime SpeedupMultiple MAE
10 0.96 3.10× 10−6 311,366 8.73× 10−4

25 1.18 4.25× 10−6 276,943 6.25× 10−4

35 1.40 5.45× 10−6 257,440 5.69× 10−4

50 1.92 5.91× 10−6 324,690 5.17× 10−4

75 3.49 2.45× 10−6 1,421,537 9.42× 10−4

100 5.44 2.16× 10−6 2,522,035 3.75× 10−4

125 8.22 2.53× 10−6 3,245,742 7.98× 10−4

150 10.08 2.23× 10−6 4,522,638 4.03× 10−4

Table 3.2: Computational performance and accuracy across discretization phases. MC Time and FINN
Time are in seconds per contract. Speedup Multiple is the ratio of MC Time to FINN Time. MAE
(Mean Absolute Error) measures the difference between FINN andMonte Carlo prices.

Figure 3.4 plots FINN prices against Monte Carlo prices for all eight discretization levels. Each panel

corresponds to a different value of K , with points colored by strike price—purple indicates near-zero

strikes (high caplet prices near the top-right of each panel), while yellow indicates high strikes near 7%

(lower prices, deep out-of-the-money contracts near the origin). The scatter plots reveal tight clustering

along the 45-degree line across all discretizations, demonstrating strong agreement between FINN and

Monte Carlo prices. Notably, the near-zero strike contracts (purple points with highest prices) exhibit

particularly tight agreement, reflecting the zero-strike analytical anchoring used during training. How-

ever, higher-strike contracts (yellow/green points at lower prices, farther from the zero-strike anchor)

show slightly more scatter, particularly visible in panels with coarser discretizations. This suggests that

the FINN struggles more with contracts farther from the analytical anchor point, pointing to potential

futurework: anchoring fromboth the zero-strike and high-strike extremes could improve accuracy across

the full moneyness spectrum.
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Figure 3.4: FINN vs. Monte Carlo Prices Across Discretizations (1000-contract test set). Each panel
shows test contracts for a different discretization levelK , with points colored by strike price LE . Points
cluster tightly along the 45-degree line, with near-zero strike contracts (purple) showing the tightest agree-
ment due to the analytical zero-strike anchoring. Higher-strike contracts (yellow/green) exhibit slightly
more scatter, suggesting the FINN performs best near the analytical anchor and pointing to future work
on dual anchoring from both extremes.
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3.7 Conclusion

This paper demonstrates a fundamental computational breakthrough for pricing path-dependent inter-

est rate derivatives under the Heath-Jarrow-Morton framework. The HJM model offers unparalleled

generality: it specifies arbitrage-free dynamics for the entire forward curve simultaneously, nesting earlier

short-rate models as special cases and providing a theoretically rigorous foundation for derivatives pric-

ing. However, this generality has historically come at a severe computational cost. The forward curve is

infinite-dimensional, and pricing path-dependent contracts traditionally requires Monte Carlo simula-

tion of thousands or millions of stochastic paths—a computational burden that grows linearly with the

dimensionality of the discretized state space.

I circumventMonte Carlo simulation entirely by invoking the Feynman-Kac theorem, which establishes

that stochastic expectations can be characterized as solutions to deterministic partial differential equa-

tions. Rather than simulating random forward curve paths to estimate expected payoffs, I solve the PDE

governing the pricing functional directly. This transformation eliminates the need for path generation,

replacing stochastic simulation with a deterministic PDE plus boundary value problem. However, this

substitution merely shifts the computational challenge: traditional finite difference and finite element

methods for solving high-dimensional PDEs suffer from the curse of dimensionality, with memory and

computational requirements growing exponentially in the number of state variables.

The solution lies in Finance-InformedNeural Networks (FINNs)—deep learning models trained to sat-

isfy the pricing PDE by embedding the differential equation directly into the loss function. The neural

network parameterizes the pricing functional, and automatic differentiation computes the exact deriva-

tives needed to evaluate PDE residuals at any point in the state space. Trainingminimizes violations of the

governing PDE across sampled forward curve realizations, combinedwith penalties for violating terminal

boundary conditions and deviations from analytical zero-strike solutions. This approach leverages three

key advantages of neural networks: universal approximation capability for complex nonlinear functions,

smooth differentiability enabling automatic computation of all required derivatives, and graceful scaling
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with input dimension.

Crucially, FINN evaluation cost does not grow with the size of the state space. Once trained, the neu-

ral network prices derivatives nearly instantaneously regardless of whether the discretized forward curve

contains ten tenor points or one hundred and fifty. MonteCarlomethods, by contrast, exhibit computa-

tional cost that grows linearly with discretization level—each additional state variable requires simulating

more data andmore computational expense in the form of integrals. This dimensional robustness makes

FINNs transformative for pricing derivatives in high-dimensional settings where traditional methods be-

come prohibitively expensive.

An additional practical advantage emerges from the structure of the pricing PDE itself: themajor Greeks

—theta (time decay) and curve deltas (sensitivities to each forward rate)—appear directly as terms in

the differential equation. Since automatic differentiation computes these quantities when evaluating the

PDE residual during training, they are obtained at zero marginal cost once the network is trained. Other

Greeks, such as gamma (convexity) and vega (volatility sensitivity), require computing additional deriva-

tives but remain computationally cheap via the same automatic differentiation framework. This stands in

stark contrast to Monte Carlo methods, which cannot provide Greeks without complete re-simulation.

To compute a single delta viaMonteCarlo requires perturbing the contract parameter and running thou-

sands of paths anew—and because even small parameter perturbations can significantly alter simulated

prices through the stochastic dynamics, each Greek calculation demands a fresh Monte Carlo simula-

tion. For a portfolio requiring hundreds of prices and thousands of sensitivities, this quickly becomes

computationally prohibitive. Once the FINN is trained, however, all prices and all Greeks are available

functionally and instantaneously through simple forward and backward passes of the neural network,

with automatic differentiation delivering exact derivatives at negligible cost. For practitioners managing

large derivatives portfolios, this represents a fundamental improvement over Monte Carlo: the ability to

compute thousands of prices and their complete associated risk profiles nearly instantaneously, without

any re-simulation.

The empirical results validate this approach decisively. Tested on 1,000 randomly sampled caplet con-
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tracts across eight discretization levels (K ∈ {10, 25, 35, 50, 75, 100, 125, 150}), FINNs achieve pric-

ing accuracywithin0.04 to0.07 cents per dollar of contract value compared toMonteCarlo benchmarks.

These errors are well within acceptable bounds for trading applications, particularly considering that the

Monte Carlo benchmark itself is subject to multiple sources of approximation error: discretization of

the forward curve intoK nodes, discrete time-stepping via Euler-Maruyama, sampling error despite us-

ing 10,000 paths, and crucially, approximation of the tenor derivative ∂f/∂τ via finite differences on the

discretized grid. The FINN, by contrast, uses the analytical Svensson formula for this derivative, avoid-

ing this source of discretization error. Given that bothmethods involve approximations, the sub-0.1 cent

agreement between FINN and Monte Carlo prices demonstrates that FINNs achieve pricing accuracy

comparable to—and possibly exceeding—traditional simulation methods. The computational advan-

tage is dramatic: FINNs price caplets 300,000 to 4,500,000 times faster than Monte Carlo simulation,

with speedups increasing as dimension grows. Once trained on consumer-grade hardware (8GB GPU),

evaluation takes only a few microseconds per contract regardless of discretization level. Monte Carlo

evaluation time, by contrast, grows linearly withK , reaching nearly 10 seconds per contract atK = 150.

This scaling behaviormakes FINNsparticularly attractive for real-time riskmanagement, high-frequency

trading, iterativemodel calibration, and any application requiring rapid repricingof large derivatives port-

folios under varying market conditions.

Beyond the immediate application to caplet pricing, the FINN methodology generalizes naturally to

other path-dependent interest rate derivatives—caps, floors, swaptions, callable bonds—all of which

can be priced by modifying only the boundary condition in the loss function while retaining the same

core PDE structure. The framework already accommodates local volatility (all results in this paper use

volatility that scales with the square root of forward rate levels), and extends equally to more sophisti-

cated stochastic volatility models and jump-diffusion processes, with state-dependent coefficients enter-

ing seamlessly through automatic differentiation. This flexibility, combined with the dramatic computa-

tional speedups and essentially free Greeks, positions Finance-Informed Neural Networks as a powerful

new tool for derivatives pricing in high-dimensional continuous-time models.
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